cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A115443 Numbers whose square is the concatenation of two numbers k and k-4.

Original entry on oeis.org

81, 8157, 9801, 467347, 532654, 998001, 76450589, 99980001, 7801738415, 8593817623, 9208120793, 9999800001, 346667333467, 401461854015, 598538145986, 653332666534, 945207479453, 999998000001, 48349470735060
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			9605_9601 = 9801^2.
		

Crossrefs

A115444 Numbers whose square is the concatenation of two numbers k and k-5.

Original entry on oeis.org

46, 55, 949951, 979654, 7771781679, 7900890080, 9920892100, 9949999501, 38773083432317, 41534158410842, 47433813119408, 52566186880593, 58465841589159, 61226916567684, 72258945037435, 86156896546725
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			902406_902401 = 949951^2.
		

Crossrefs

A115445 Numbers whose square is the concatenation of two numbers k and k-7.

Original entry on oeis.org

9, 13, 3656545, 4565636, 5434365, 6343456, 3646962589704198389, 6353037410295801612, 9101508044249652935, 7903999111431765764698711045778, 9722180929613583946516892863960
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			4023943_4023936 = 6343456^2.
		

Crossrefs

A115447 Numbers whose square is the concatenation of two numbers k and k-9.

Original entry on oeis.org

71, 7235, 9701, 798981, 997001, 35324118, 64675883, 99970001, 3297392379, 6702607622, 7890726434, 8812181189, 9999700001, 897807218979, 917811219179, 979998999801, 999997000001, 46193210013657, 49751928874867
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			638370_638361 = 798981^2.
		

Crossrefs

A030466 Squares that are concatenations of two consecutive nonzero numbers.

Original entry on oeis.org

183184, 328329, 528529, 715716, 60996100, 1322413225, 4049540496, 106755106756, 453288453289, 20661152066116, 29752082975209, 2214532822145329, 2802768328027684, 110213248110213249, 110667555110667556, 147928995147928996, 178838403178838404, 226123528226123529
Offset: 1

Views

Author

Keywords

References

  • British Mathematical Olympiad, 1993, Round 1, Question 1: "Find, showing your method, a six-digit integer n with the following properties: (i) n is a perfect square, (ii) the number formed by the last three digits of n is exactly one greater than the number formed by the first three digits of n. (Thus n might look like 123124, although this is not a square.)"
  • Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of the British Mathematical Olympiad 1993, page 164.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := IntegerQ[Sqrt[n*10^Floor[1 + Log10[n + 1]] + n + 1]]; (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    lista(nn) = forstep(n=183, nn, [3, 5, 7, 5, 3, 1, 4, 7, 5, 3, 5, 7, 5, 3, 5, 7, 5, 3, 5, 7, 4, 1], my(s = eval(concat(Str(n), Str(n+1)))); if(issquare(s), print1(s, ", "))) \\ Iain Fox, Dec 27 2017
    
  • PARI
    eea(x, y) = my(a=max(x,y), b=min(x,y), s=0, so=1, st, r=b, ro=a, rt, q, t); while(r, q=ro\r; rt=r; r=ro-q*r; ro=rt; st=s; s=so-q*s; so=st); t=(ro-so*a)\b; if(x>y, [so, t], [t, so]) \\ Extended Euclidean Algorithm
    lista(nn) = my(res=Set(), b, f2, c, s); for(d=3, nn, b=10^d+1; fordiv(b, f, if(f!=1 && f!=b, f2=b/f; if(gcd(f, f2)==1, c=eea(f, f2); if(c[1]<0, s=f*(f2+2*c[1])*f2*(f-2*c[2])+1, s=f*(2*c[1])*f2*(-2*c[2])+1); if(#digits(s)==d*2, res=setunion(res, Set(s))))))); Vec(res) \\ (Will find all values of length nn*2 or shorter) Iain Fox, Oct 16 2021

Formula

a(n) = A030465(n)*(10^A055642(A030465(n))+1)+1. - Iain Fox, Oct 16 2021

Extensions

a(15)-a(17) from Arkadiusz Wesolowski, Apr 02 2014
a(18) from Iain Fox, Dec 27 2017

A054216 Numbers m such that m^2 is a concatenation of two consecutive decreasing numbers.

Original entry on oeis.org

91, 9079, 9901, 733674, 999001, 88225295, 99990001, 8900869208, 9296908812, 9604060397, 9999900001, 326666333267, 673333666734, 700730927008, 972603739727, 999999000001, 34519562953737, 39737862788838, 49917309624956
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2000

Keywords

Comments

Obviously b(n) = 100^n - 10^n + 1 = (91, 9901, 999001, 99990001, ...) is a subsequence. Are { b(2), b(4), b(6), b(8) } the only terms of this sequence that are prime? - M. F. Hasler, Mar 30 2008. Answer: The smallest prime in this sequence that is not of the form b(n) is A054216(155) = 811451682377384625400019885321 [Max Alekseyev, Oct 08 2008]. See A145381 for further prime terms.
Other subsequences are c(n) = ( 10^(6n) - 2*10^(5n) - 10^(3n) - 2*10^n + 1 )/3 (n>=2), d(n) = (33/101)*(100^(404n+71)+1)+10^(404n+71) (n>=0) and e(n) = (33/101)*(100^(404n-71)+1)+10^(404n-71) (n>=1). Primes among these include c(10), c(14) and d(0). - M. F. Hasler, Oct 09 2008
A positive integer m is in this sequence if and only if m^2 == -1 (mod 10^k + 1) where k is the number of decimal digits in m. Note that k cannot be odd, since in this case 11 divides 10^k + 1 while -1 is not a square modulo 11. - Max Alekseyev, Oct 09 2008

Examples

			'8242' + '8242-1' gives 82428241 which is 9079^2.
Leading zeros are not allowed, which is why c(1)=266327 is not in this sequence although c(1)^2 = 070930 070929.
		

References

  • Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.

Crossrefs

Programs

  • PARI
    isA054216(n)={ 1==[1,-1]*divrem(n^2,10^(#Str(n^2)\2)) & #Str(n^2)%2==0 }

Formula

a(n) = sqrt(A054215(n)). - Max Alekseyev, May 14 2007

Extensions

More terms from Max Alekseyev, May 14 2007
Several corrections and additions from M. F. Hasler, Oct 09 2008

A054215 Squares that are concatenations of two consecutive decreasing numbers.

Original entry on oeis.org

8281, 82428241, 98029801, 538277538276, 998002998001, 7783702677837025, 9998000299980001, 79225472657922547264, 86432513458643251344, 92237976109223797609, 99998000029999800001, 106710893290106710893289
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2000

Keywords

Comments

Infinitely many terms of this sequence are provided by A168624(k)^2 for k>0. - Bruno Berselli, Mar 13 2018

Examples

			E.g. '8242' + '8242-1' gives 82428241 which is 9079^2.
		

References

  • Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.

Crossrefs

Formula

a(n) = concatenation of A054214(n) and A054214(n)-1. - Max Alekseyev, May 14 2007

Extensions

More terms from Max Alekseyev, May 14 2007
82848241 corrected to 82428241 by Dominick Cancilla, Jul 21 2010

A020339 a(n)^2 is the least square base-n doublet (base-n representation is the concatenation of 2 identical strings).

Original entry on oeis.org

6, 2, 615, 84, 119973, 4, 3, 23620, 36363636364, 6, 24766945690, 17928148, 915, 4, 86808207405692007605, 6, 130, 10, 2667, 95530227420606, 10623969116570, 12, 5, 343872950627253606, 9, 14, 59239353339085, 8130
Offset: 2

Views

Author

Keywords

Comments

The identical strings must contain at least one nonzero digit, so that a(n) > 0. - Alonso del Arte, Jun 20 2018
In Bridy et al. it is shown how to construct an example (although not necessarily the least example) for each integer base n >= 2. - Jeffrey Shallit, Jun 14 2021

Examples

			The first few squares in binary are 1, 100, 1001, 10000, 11001, 100100. Thus we see that 100100, which is 36 in decimal, the square of 6, is the first square which is the concatenation of two identical bit patterns, and therefore a(2) = 6.
		

References

  • Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers", Revised Edition 1997, p. 189.

Crossrefs

Programs

  • Maple
    f:= proc(b)
      local d,F,x,t,j;
      for d from 1 do
        F:= select(t -> t[2]::odd, ifactors(1+b^d)[2]);
        x:= mul(t[1],t=F);
        if x >= b^d then next fi;
        j:= ceil(sqrt(b^(d-1)/x));
        if j^2*x < b^d then return j*sqrt(x*(1+b^d)) fi
      od
    end proc:
    map(f, [$2..40]); # Robert Israel, May 19 2024

Formula

a(j*k^2-1) = j if k >= 2 and j is squarefree. - Robert Israel, May 19 2024

Extensions

Name slightly adjusted by Alonso del Arte, Jun 20 2018

A020340 Least square base n doublet (written in base 10).

Original entry on oeis.org

36, 4, 378225, 7056, 14393520729, 16, 9, 557904400, 1322314049613223140496, 36, 613401598811409576100, 321418490709904, 837225, 16, 7535664872989640713426833504575377836025, 36, 16900, 100, 7112889
Offset: 2

Views

Author

Keywords

Comments

In Bridy et al. it is shown how to construct infinitely many examples for any given base n >= 2. - Jeffrey Shallit, Jun 14 2021

References

  • Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers", Revised Edition 1997, p. 189.

Crossrefs

A236383 Smallest k such that k^2 is a concatenation of two numbers x and y where y = x + n^2 and x and y have the same number of digits.

Original entry on oeis.org

428, 453, 465, 381, 369, 358, 917, 421, 394, 452, 704, 716, 442, 833, 323, 380, 347, 697, 8376, 449, 3994, 407, 439, 431, 4770, 6961, 391, 336, 3533, 4277, 7915, 36332, 7705, 4487, 3323, 8869, 8942, 3250, 4560, 7632, 90951, 7988, 4204, 3606, 8586, 72774
Offset: 1

Views

Author

Michel Lagneau, Jan 24 2014

Keywords

Comments

Conjecture: a(n) exists for all numbers n.
a(1) = A030467(1).
The same problem with the concatenation of x + n instead of x + n^2 is difficult.
The corresponding sequence with x + n instead of x + n^2 starts with 36363636364, 428, 8874, 5, 310, 7, 39 for n = 0,...,6, and a(7) > 10^70, if it exists. - Giovanni Resta, Jun 24 2019

Examples

			a(11) = 704 because 704^2 = 495616 is the concatenation of 495 and 616, and 616 - 495 = 121 = 11^2.
		

Crossrefs

Cf. A030467.

Programs

  • Maple
    for n from 1 to 47 do:
       ii:=0:
          for k from 1 to 10^7 while(ii=0)do :
             x:=convert(k^2,base,10):n1:=nops(x):
             if irem(n1,2)=0
               then
               s:=sum('x[i]*10^(i-1) ', 'i'=1..n1/2):
               z:=convert(s,base,10):
               s1:=sum('x[j]*10^(j-n1/2-1) ', 'j'=n1/2+1..n1):
                if s-s1 = n^2
                then
                ii:=1:printf(`%d, `,k):
                else
                fi:
             fi:
           od:
       od:

Extensions

Definition corrected by Giovanni Resta, Jun 24 2019
Previous Showing 11-20 of 22 results. Next