A030467
Numbers k such that k^2 is a concatenation of two successive numbers.
Original entry on oeis.org
428, 573, 727, 846, 7810, 36365, 63636, 326734, 673267, 4545454, 5454547, 47058823, 52941178, 331983807, 332667334, 384615386, 422892898, 475524477, 524475524, 577107103, 615384615, 667332667, 668016194, 719964246, 758241758, 804511280, 810873337, 857142859
Offset: 1
428^2 = 183184, the concatenation of 183 and 184.
-
t={}; Do[If[EvenQ[y=Length[x=IntegerDigits[n^2]]] && Differences[FromDigits/@Partition[x,y/2]]=={1},AppendTo[t,n]],{n, 5.5*10^6}]; t (* Jayanta Basu, May 25 2013 *)
Sqrt[#]&/@(Select[FromDigits[Flatten[IntegerDigits/@#]]&/@ (Partition[ Range[735*10^6],2,1]),IntegerQ[Sqrt[#]]&]) (* The program takes a long time to run. *) (* Harvey P. Dale, Oct 10 2017 *)
-
for(n=1, 10^9, t=eval(concat(Str(n),Str(n+1))); if(issquare(t,&s), print1(s,", "))); /* Antonio Roldán and Joerg Arndt, Dec 31 2012 */
A054214
Numbers n such that n concatenated with n-1 is a square.
Original entry on oeis.org
82, 8242, 9802, 538277, 998002, 77837026, 99980002, 7922547265, 8643251345, 9223797610, 9999800002, 106710893290, 453378226757, 491023832065, 945958034530, 999998000002, 11916002265170, 15790977390245, 24917378001937, 25082758752026, 36315251812570
Offset: 1
E.g. '8242' + '8242-1' gives 82428241 which is 9079^2.
- Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.
A030465
Numbers k such that k concatenated with k+1 is a square.
Original entry on oeis.org
183, 328, 528, 715, 6099, 13224, 40495, 106755, 453288, 2066115, 2975208, 22145328, 28027683, 110213248, 110667555, 147928995, 178838403, 226123528, 275074575, 333052608, 378698224, 445332888, 446245635
Offset: 1
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 183, p. 56, Ellipses, Paris 2008.
-
Select[{#,FromDigits[Join[IntegerDigits[#], IntegerDigits[1 + #]]]} & /@
Flatten[Table[10*n + {0, 3, 4, 5, 8, 9}, {n, 10^5}]], IntegerQ[Sqrt[#[[2]]]] &] (* Hans Rudolf Widmer, Jun 30 2021 *)
-
isok(k) = issquare(eval(concat(Str(k), Str(k+1)))); \\ Michel Marcus, Jun 30 2021
A030466
Squares that are concatenations of two consecutive nonzero numbers.
Original entry on oeis.org
183184, 328329, 528529, 715716, 60996100, 1322413225, 4049540496, 106755106756, 453288453289, 20661152066116, 29752082975209, 2214532822145329, 2802768328027684, 110213248110213249, 110667555110667556, 147928995147928996, 178838403178838404, 226123528226123529
Offset: 1
- British Mathematical Olympiad, 1993, Round 1, Question 1: "Find, showing your method, a six-digit integer n with the following properties: (i) n is a perfect square, (ii) the number formed by the last three digits of n is exactly one greater than the number formed by the first three digits of n. (Thus n might look like 123124, although this is not a square.)"
- Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 1 of the British Mathematical Olympiad 1993, page 164.
- Iain Fox, Table of n, a(n) for n = 1..10471.
- British Mathematical Olympiad 1993, Round 1, Problem 1.
- Michael Penn, British Mathematics Olympiad 1993 Round 1 Question 1, YouTube, Apr 24, 2020.
- Pante Stanica, Squares as concatenation of consecutive integers, Slides, West Coast Number Theory, Dec 17 2017.
- Index to sequences related to Olympiads.
-
fQ[n_] := IntegerQ[Sqrt[n*10^Floor[1 + Log10[n + 1]] + n + 1]]; (* Robert G. Wilson v, Dec 27 2017 *)
-
lista(nn) = forstep(n=183, nn, [3, 5, 7, 5, 3, 1, 4, 7, 5, 3, 5, 7, 5, 3, 5, 7, 5, 3, 5, 7, 4, 1], my(s = eval(concat(Str(n), Str(n+1)))); if(issquare(s), print1(s, ", "))) \\ Iain Fox, Dec 27 2017
-
eea(x, y) = my(a=max(x,y), b=min(x,y), s=0, so=1, st, r=b, ro=a, rt, q, t); while(r, q=ro\r; rt=r; r=ro-q*r; ro=rt; st=s; s=so-q*s; so=st); t=(ro-so*a)\b; if(x>y, [so, t], [t, so]) \\ Extended Euclidean Algorithm
lista(nn) = my(res=Set(), b, f2, c, s); for(d=3, nn, b=10^d+1; fordiv(b, f, if(f!=1 && f!=b, f2=b/f; if(gcd(f, f2)==1, c=eea(f, f2); if(c[1]<0, s=f*(f2+2*c[1])*f2*(f-2*c[2])+1, s=f*(2*c[1])*f2*(-2*c[2])+1); if(#digits(s)==d*2, res=setunion(res, Set(s))))))); Vec(res) \\ (Will find all values of length nn*2 or shorter) Iain Fox, Oct 16 2021
A054215
Squares that are concatenations of two consecutive decreasing numbers.
Original entry on oeis.org
8281, 82428241, 98029801, 538277538276, 998002998001, 7783702677837025, 9998000299980001, 79225472657922547264, 86432513458643251344, 92237976109223797609, 99998000029999800001, 106710893290106710893289
Offset: 1
E.g. '8242' + '8242-1' gives 82428241 which is 9079^2.
- Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.
A020339
a(n)^2 is the least square base-n doublet (base-n representation is the concatenation of 2 identical strings).
Original entry on oeis.org
6, 2, 615, 84, 119973, 4, 3, 23620, 36363636364, 6, 24766945690, 17928148, 915, 4, 86808207405692007605, 6, 130, 10, 2667, 95530227420606, 10623969116570, 12, 5, 343872950627253606, 9, 14, 59239353339085, 8130
Offset: 2
The first few squares in binary are 1, 100, 1001, 10000, 11001, 100100. Thus we see that 100100, which is 36 in decimal, the square of 6, is the first square which is the concatenation of two identical bit patterns, and therefore a(2) = 6.
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
- David Wells, "The Penguin Dictionary of Curious and Interesting Numbers", Revised Edition 1997, p. 189.
-
f:= proc(b)
local d,F,x,t,j;
for d from 1 do
F:= select(t -> t[2]::odd, ifactors(1+b^d)[2]);
x:= mul(t[1],t=F);
if x >= b^d then next fi;
j:= ceil(sqrt(b^(d-1)/x));
if j^2*x < b^d then return j*sqrt(x*(1+b^d)) fi
od
end proc:
map(f, [$2..40]); # Robert Israel, May 19 2024
A020340
Least square base n doublet (written in base 10).
Original entry on oeis.org
36, 4, 378225, 7056, 14393520729, 16, 9, 557904400, 1322314049613223140496, 36, 613401598811409576100, 321418490709904, 837225, 16, 7535664872989640713426833504575377836025, 36, 16900, 100, 7112889
Offset: 2
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
- David Wells, "The Penguin Dictionary of Curious and Interesting Numbers", Revised Edition 1997, p. 189.
A145381
Prime numbers p such that p^2 is a concatenation of decimal representations of m and m-1 for some integer m.
Original entry on oeis.org
9901, 99990001, 999999000001, 9999999900000001, 811451682377384625400019885321, 666809750614092756440997454321145572124297
Offset: 1
A328089
Numbers k such that k+1 concatenated with k is a square.
Original entry on oeis.org
81, 8241, 9801, 538276, 998001, 77837025, 99980001, 7922547264, 8643251344, 9223797609, 9999800001, 106710893289, 453378226756, 491023832064, 945958034529, 999998000001, 11916002265169, 15790977390244, 24917378001936, 25082758752025, 36315251812569
Offset: 1
- Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.
Showing 1-9 of 9 results.
Comments