A030467
Numbers k such that k^2 is a concatenation of two successive numbers.
Original entry on oeis.org
428, 573, 727, 846, 7810, 36365, 63636, 326734, 673267, 4545454, 5454547, 47058823, 52941178, 331983807, 332667334, 384615386, 422892898, 475524477, 524475524, 577107103, 615384615, 667332667, 668016194, 719964246, 758241758, 804511280, 810873337, 857142859
Offset: 1
428^2 = 183184, the concatenation of 183 and 184.
-
t={}; Do[If[EvenQ[y=Length[x=IntegerDigits[n^2]]] && Differences[FromDigits/@Partition[x,y/2]]=={1},AppendTo[t,n]],{n, 5.5*10^6}]; t (* Jayanta Basu, May 25 2013 *)
Sqrt[#]&/@(Select[FromDigits[Flatten[IntegerDigits/@#]]&/@ (Partition[ Range[735*10^6],2,1]),IntegerQ[Sqrt[#]]&]) (* The program takes a long time to run. *) (* Harvey P. Dale, Oct 10 2017 *)
-
for(n=1, 10^9, t=eval(concat(Str(n),Str(n+1))); if(issquare(t,&s), print1(s,", "))); /* Antonio Roldán and Joerg Arndt, Dec 31 2012 */
A054214
Numbers n such that n concatenated with n-1 is a square.
Original entry on oeis.org
82, 8242, 9802, 538277, 998002, 77837026, 99980002, 7922547265, 8643251345, 9223797610, 9999800002, 106710893290, 453378226757, 491023832065, 945958034530, 999998000002, 11916002265170, 15790977390245, 24917378001937, 25082758752026, 36315251812570
Offset: 1
E.g. '8242' + '8242-1' gives 82428241 which is 9079^2.
- Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.
A030465
Numbers k such that k concatenated with k+1 is a square.
Original entry on oeis.org
183, 328, 528, 715, 6099, 13224, 40495, 106755, 453288, 2066115, 2975208, 22145328, 28027683, 110213248, 110667555, 147928995, 178838403, 226123528, 275074575, 333052608, 378698224, 445332888, 446245635
Offset: 1
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 183, p. 56, Ellipses, Paris 2008.
-
Select[{#,FromDigits[Join[IntegerDigits[#], IntegerDigits[1 + #]]]} & /@
Flatten[Table[10*n + {0, 3, 4, 5, 8, 9}, {n, 10^5}]], IntegerQ[Sqrt[#[[2]]]] &] (* Hans Rudolf Widmer, Jun 30 2021 *)
-
isok(k) = issquare(eval(concat(Str(k), Str(k+1)))); \\ Michel Marcus, Jun 30 2021
A054216
Numbers m such that m^2 is a concatenation of two consecutive decreasing numbers.
Original entry on oeis.org
91, 9079, 9901, 733674, 999001, 88225295, 99990001, 8900869208, 9296908812, 9604060397, 9999900001, 326666333267, 673333666734, 700730927008, 972603739727, 999999000001, 34519562953737, 39737862788838, 49917309624956
Offset: 1
'8242' + '8242-1' gives 82428241 which is 9079^2.
Leading zeros are not allowed, which is why c(1)=266327 is not in this sequence although c(1)^2 = 070930 070929.
- Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.
Several corrections and additions from
M. F. Hasler, Oct 09 2008
A054215
Squares that are concatenations of two consecutive decreasing numbers.
Original entry on oeis.org
8281, 82428241, 98029801, 538277538276, 998002998001, 7783702677837025, 9998000299980001, 79225472657922547264, 86432513458643251344, 92237976109223797609, 99998000029999800001, 106710893290106710893289
Offset: 1
E.g. '8242' + '8242-1' gives 82428241 which is 9079^2.
- Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.
A020339
a(n)^2 is the least square base-n doublet (base-n representation is the concatenation of 2 identical strings).
Original entry on oeis.org
6, 2, 615, 84, 119973, 4, 3, 23620, 36363636364, 6, 24766945690, 17928148, 915, 4, 86808207405692007605, 6, 130, 10, 2667, 95530227420606, 10623969116570, 12, 5, 343872950627253606, 9, 14, 59239353339085, 8130
Offset: 2
The first few squares in binary are 1, 100, 1001, 10000, 11001, 100100. Thus we see that 100100, which is 36 in decimal, the square of 6, is the first square which is the concatenation of two identical bit patterns, and therefore a(2) = 6.
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
- David Wells, "The Penguin Dictionary of Curious and Interesting Numbers", Revised Edition 1997, p. 189.
-
f:= proc(b)
local d,F,x,t,j;
for d from 1 do
F:= select(t -> t[2]::odd, ifactors(1+b^d)[2]);
x:= mul(t[1],t=F);
if x >= b^d then next fi;
j:= ceil(sqrt(b^(d-1)/x));
if j^2*x < b^d then return j*sqrt(x*(1+b^d)) fi
od
end proc:
map(f, [$2..40]); # Robert Israel, May 19 2024
A020340
Least square base n doublet (written in base 10).
Original entry on oeis.org
36, 4, 378225, 7056, 14393520729, 16, 9, 557904400, 1322314049613223140496, 36, 613401598811409576100, 321418490709904, 837225, 16, 7535664872989640713426833504575377836025, 36, 16900, 100, 7112889
Offset: 2
- Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
- David Wells, "The Penguin Dictionary of Curious and Interesting Numbers", Revised Edition 1997, p. 189.
A309828
Squares formed by concatenating k and 2*k+1.
Original entry on oeis.org
25, 49, 1225, 4489, 112225, 444889, 11122225, 44448889, 816416329, 1111222225, 1451229025, 3832476649, 4444488889, 111112222225, 444444888889, 10185602037121, 11111122222225, 44444448888889, 46355849271169, 997230019944601, 1111111222222225, 1231148024622961
Offset: 1
5^2 = 25 = 2_(2 * 2 + 1);
7^2 = 49 = 4_(2 * 4 + 1);
35^2 = 1225 = 12_(2 * 12 + 1);
61907^2 = 3832476649 = 38324_(2 * 38324 + 1).
- Ion Cucurezeanu, Perfect squares and cubes of integers, Ed. Gil, Zalău, (2007), ch. 4, p. 25, pr. 211, 212 (in Romanian).
-
[a:n in [1..30000000]|IsSquare(a) where a is 10^(#Intseq(2*n+1))*n+2*n+1];
-
F:= proc(m) local x,X,A;
X:= [numtheory:-rootsunity(2,10^m+2)];
A:= map(x -> (x^2-1)/(10^m+2), X);
A:= sort(select(x -> 2*x+1>=10^(m-1) and 2*x+1<10^m, A));
op(map(x -> x*10^m+2*x+1, A))
end proc:
subsop(1=NULL, [seq(F(m),m=1..10)]); # Robert Israel, Aug 20 2019
-
Select[Array[FromDigits@ Flatten@ IntegerDigits[{#, 2 # + 1}] &, 10^5],
IntegerQ@ Sqrt@ # &] (* Michael De Vlieger, Aug 19 2019 *)
-
def Test(n):
s = str(n)
ps, ss = s[0:len(s)//2], s[len(s)//2:len(s)]
return int(ss) == 2*int(ps)+1 and s[len(s)//2] != "0"
n, a = 1, 4
while n < 23:
if Test(a*a):
print(n,a*a)
n = n+1
a = a+1 # A.H.M. Smeets, Aug 19 2019
-
from itertools import count, islice
from sympy.ntheory.primetest import is_square
def A309828_gen(): # generator of terms
return filter(is_square,(int(str(k)+str((k<<1)+1)) for k in count(1)))
A309828_list = list(islice(A309828_gen(),20)) # Chai Wah Wu, Feb 20 2023
A381918
Kaprekar numbers that are the concatenation of two consecutive numbers.
Original entry on oeis.org
45, 2223, 2728, 4950, 148149, 351352, 499500, 11111112, 38883889, 49995000, 63636364, 74747475, 75247525, 86358636, 4756047561, 4999950000, 5867158672, 6111061111, 8888888889, 9132791328, 104247104248, 164983164984, 178321178322, 195156195157, 230769230770, 269230269231
Offset: 1
If the number 351 is concatenated with the next number, 352, we get a Kaprekar number, 351352. It can be verified that 351352^2 = 123448227904, and 123448 + 227904 = 351352.
Showing 1-9 of 9 results.
Comments