cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A292286 a(n) = k if the product of the divisors of n is n^k for some integer k, or -1 if no such k exists. For the ambiguous case, define a(1) = 0.

Original entry on oeis.org

0, 1, 1, -1, 1, 2, 1, 2, -1, 2, 1, 3, 1, 2, 2, -1, 1, 3, 1, 3, 2, 2, 1, 4, -1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, -1, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, -1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, -1, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, -1, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, -1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 13 2017

Keywords

Comments

If the number of divisors (nd) of n > 1 is odd, then a(n) = -1, else a(n) = nd/2. - Michel Marcus, Sep 14 2017
First occurrence of k beginning with -1 is A293570(r). - Robert G. Wilson v, Oct 10 2017
Records occur for A293570(r): 4, 6, 12, 24, 48, 60, 192, 240, 3072, 12288, 196608, 786432, 12582912, 805306368, etc. - Robert G. Wilson v, Oct 10 2017

Examples

			a(10) = 2 because divisors of 10 are 1,2,5,10 with product 100 = 10^2.
		

Crossrefs

Numbers n such that the product of divisors of n is n^k: A000040 (k = 1), A007422 (k = 2), A162947 (k = 3), A111398 (k = 4), A030628 (k = 5), A030630 (k = 6).

Programs

  • Mathematica
    Table[Boole[n == 1] + If[OddQ@ #, -1, #/2] &@ DivisorSigma[0, n], {n, 100}] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    a(n) = if (n==1, 0, my(nd = numdiv(n)); if (nd % 2, -1, nd/2)); \\ Michel Marcus, Sep 14 2017
    
  • PARI
    a(n)=my(k=numdiv(n)); if(k%2, if(n>1, -1, 0), k/2) \\ Charles R Greathouse IV, Sep 19 2017

Formula

a(1) = 0, a(A000290(n+1)) = -1, a(A000037(n+1)) = A056924(A000037(n+1)), where A000290 = the squares and A000037 = the nonsquares.

Extensions

Definition corrected by Charles R Greathouse IV, Sep 13 2017

A065985 Numbers k such that d(k) / 2 is prime, where d(k) = number of divisors of k.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 125, 129, 133, 134
Offset: 1

Views

Author

Joseph L. Pe, Dec 10 2001

Keywords

Comments

Numbers whose sorted prime signature (A118914) is either of the form {2*p-1} or {1, p-1}, where p is a prime. Equivalently, disjoint union of numbers of the form q^(2*p-1) where p and q are primes, and numbers of the form r * q^(p-1), where p, q and r are primes and r != q. - Amiram Eldar, Sep 09 2024

Crossrefs

Numbers with exactly 2*p divisors: A030513 (p=2), A030515 (p=3), A030628 \ {1} (p=5), A030632 (p=7), A137485 (p=11), A137489 (p=13), A175744 (p=17), A175747 (p=19).

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[DivisorSigma[0, # ] / 2] == True &]
  • PARI
    n=0; for (m=1, 10^9, f=numdiv(m)/2; if (frac(f)==0 && isprime(f), write("b065985.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Nov 05 2009
    
  • PARI
    is(n)=n=numdiv(n)/2; denominator(n)==1 && isprime(n) \\ Charles R Greathouse IV, Oct 15 2015

A137490 Numbers with 27 divisors.

Original entry on oeis.org

900, 1764, 2304, 4356, 4900, 6084, 6400, 10404, 11025, 12100, 12544, 12996, 16900, 19044, 23716, 26244, 27225, 28900, 30276, 30976, 33124, 34596, 36100, 38025, 43264, 49284, 52900, 53361, 56644, 60516, 65025, 66564, 70756, 73984, 74529
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^26 (subset of A089081), p^2*q^2*r^2 (like 900, 1764, 4356, squares of A007304) or p^2*q^8 (like 2304, 6400, subset of the squares of A030628) where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 27.
Sum_{n>=1} 1/a(n) = (P(2)^3 + 2*P(6) - 3*P(2)*P(4))/6 + P(2)*P(8) - P(10) + P(26) = 0.00453941..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A182680 a(n) = the largest n-digit number with exactly 10 divisors, a(n) = 0 if no such number exists.

Original entry on oeis.org

0, 80, 976, 9904, 99952, 999952, 9999952, 99999824, 999999536, 9999999824, 99999999536, 999999999567, 9999999999963, 99999999999728, 999999999999856, 9999999999998896, 99999999999999824, 999999999999999952, 9999999999999999856, 99999999999999999568
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

a(n) = the largest n-digit number of the form p^9 or p^4*q (p, q distinct primes), a(n) = 0 if no such number exists.

Crossrefs

Programs

  • Mathematica
    Table[k=10^n-1; While[k>10^(n-1) && DivisorSigma[0, k] != 10, k--]; If[k==10^(n-1), k=0]; k, {n, 20}]

Formula

A000005(a(n)) = 10.
a(n) >= A182679(n).

Extensions

Extended by T. D. Noe, Nov 29 2010

A349699 Triangular numbers with exactly 10 divisors.

Original entry on oeis.org

496, 3321, 13203, 195625, 780625, 2883601, 11527201, 107186761, 407879641, 3487920481, 39155632561, 250123560121, 47622568443841, 95853663421561, 322876778328721, 403230060146161, 3034217580863041, 6333850463213521, 13292221046055841, 25335401515201441
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 25 2021

Keywords

Comments

All terms are of the form p^4 * q, with primes p < q.
a(3) = 13203 = 3^4 * 163 is the only term for which q = 2*p^4 + 1; for all other terms, q is either 2*p^4 - 1 (e.g., a(1) = 496 = 2^4 * 31) or (p^4 + 1)/2 (e.g., a(2) = 3321 = 3^4 * 41).

Examples

			Table showing the first 20 terms and their prime factorizations. Because of the different relationships between the prime factors p and q for different terms (see Comments), neither the values of p nor those of q are nondecreasing.
.
   n               a(n) =   p^4 *         q
  --  -------------------------------------
   1                496 =   2^4 *        31
   2               3321 =   3^4 *        41
   3              13203 =   3^4 *       163
   4             195625 =   5^4 *       313
   5             780625 =   5^4 *      1249
   6            2883601 =   7^4 *      1201
   7           11527201 =   7^4 *      4801
   8          107186761 =  11^4 *      7321
   9          407879641 =  13^4 *     14281
  10         3487920481 =  17^4 *     41761
  11        39155632561 =  23^4 *    139921
  12       250123560121 =  29^4 *    353641
  13     47622568443841 =  47^4 *   9759361
  14     95853663421561 =  61^4 *   6922921
  15    322876778328721 =  71^4 *  12705841
  16    403230060146161 =  73^4 *  14199121
  17   3034217580863041 =  79^4 *  77900161
  18   6333850463213521 = 103^4 *  56275441
  19  13292221046055841 = 113^4 *  81523681
  20  25335401515201441 = 103^4 * 225101761
		

Crossrefs

Programs

  • Mathematica
    t[n_] := n*(n + 1)/2; Select[t /@ Range[10^5], DivisorSigma[0, #] == 10 &] (* Amiram Eldar, Nov 26 2021 *)
  • PARI
    select(x->(numdiv(x)==10), vector(10^5, k, k*(k+1)/2)) \\ Michel Marcus, Nov 26 2021
Previous Showing 11-15 of 15 results.