cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A216426 Numbers of the form a^2*b^3, where a != b and a, b > 1.

Original entry on oeis.org

72, 108, 128, 200, 256, 288, 392, 432, 500, 512, 576, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1944, 2000, 2048, 2187, 2304, 2312, 2592, 2700, 2888, 2916, 3087, 3136, 3200, 3267, 3456, 3528, 3872, 3888, 4000
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

Terms of A216427 that are not 5th powers of squarefree numbers (A113850) and not 10th powers of primes (A030629). - Amiram Eldar, Feb 07 2023

Crossrefs

Cf. A143610.
Subsequence of A216427. - Zak Seidov, Jan 03 2014

Programs

  • Mathematica
    With[{upto=4000},Select[Union[Flatten[{#[[1]]^2 #[[2]]^3,#[[2]]^2 #[[1]]^3}& /@ Subsets[Range[2,Surd[upto,2]],{2}]]],#<=upto&]](* Harvey P. Dale, Jan 04 2014 *)
    pMx = 25; mx = 2^3 pMx^2; t = Flatten[Table[If[a != b, a^2 b^3, 0], {a, 2, mx^(1/2)}, {b, 2, mx^(1/3)}]]; Union[Select[t, 0 < # <= mx &]] (* T. D. Noe, Jan 02 2014 *)
  • PARI
    list(lim)=my(v=List()); for(b=2, sqrtnint(lim\4,3), for(a=2, sqrtint(lim\b^3), if(a!=b, listput(v, a^2*b^3)))); Set(v) \\ Charles R Greathouse IV, Jan 02 2014
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius, primepi
    def A216426(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            j, b, a, d = isqrt(x), integer_nthroot(x,6)[0], integer_nthroot(x,5)[0], integer_nthroot(x,10)[0]
            l, c = 0, n+x-2+primepi(b)+sum(mobius(k)*(j//k**3) for k in range(d+1, b+1))+primepi(d)+sum(mobius(k)*(a//k**2+j//k**3) for k in range(1, d+1))
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = sum(mobius(k)*((k2-1)//k**2) for k in range(1, isqrt(k2-1)+1))
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return bisection(f,n,n) # Chai Wah Wu, Sep 13 2024

Formula

Sum_{n>=1} 1/a(n) = 2 + ((zeta(2)-1)*(zeta(3)-1)-1)/zeta(6) - zeta(5)/zeta(10) - P(6) - P(10) = 0.09117811499514578262..., where P(s) is the prime zeta function. - Amiram Eldar, Feb 07 2023

Extensions

Name corrected by Charles R Greathouse IV, Jan 02 2014

A381311 Numbers whose powerful part (A057521) is a power of a prime with an even exponent >= 2.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 112, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 188, 192, 198, 204, 207, 208, 212, 220, 228, 234, 236
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Numbers k whose largest unitary divisor that is a square, A350388(k), is a prime power (A246655), or equivalently, A350388(k) is in A056798 \ {1}.
Numbers having exactly one non-unitary prime factor and its multiplicity is even.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., 2*m} with m >= 1, i.e., any number (including zero) of 1's and then a single even number.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} p/((p-1)*(p+1)^2) = 0.24200684327095676029... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;;,2]]]}, EvenQ[e[[1]]] && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000],q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); !(e[1] % 2) && (#e == 1 || e[2] == 1));

A182681 a(n) is the smallest n-digit number with exactly 11 divisors, a(n) = 0 if no such number exists.

Original entry on oeis.org

0, 0, 0, 1024, 59049, 0, 9765625, 0, 282475249, 0, 25937424601, 137858491849, 2015993900449, 41426511213649, 420707233300201, 4808584372417849, 13422659310152401, 174887470365513049, 1822837804551761449, 15516041187205853449, 110462212541120451001, 1091533853073393531649
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

a(n) is the smallest n-digit number of the form p^10 (p = prime), a(n) = 0 if no such number exists.

Crossrefs

See A182682(n) - the largest n-digit number with exactly 11 divisors.
Cf. A030629 (numbers with 11 divisors).

Programs

  • PARI
    a(n)=(10^n>n=nextprime(sqrtn(10^(n-1),10))^10)*n  \\ M. F. Hasler, Nov 27 2010

Formula

A000005(a(n)) = 11.
a(n) = min { 0 } union ( A030629 intersect [10^(n-1), 10^n-1] )

A182682 a(n) = the largest n-digit number with exactly 11 divisors, a(n) = 0 if no such number exists.

Original entry on oeis.org

0, 0, 0, 1024, 59049, 0, 9765625, 0, 282475249, 0, 25937424601, 137858491849, 6131066257801, 41426511213649, 819628286980801, 4808584372417849, 52599132235830049, 713342911662882601, 9468276082626847201, 73742412689492826049, 339456738992222314849, 9099059901039401398249
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

a(n) = the largest n-digit number of the form p^10 (p = prime), a(n) = 0 if no such number exists.

Crossrefs

Formula

A000005(a(n)) = 11.
a(n) >= A182681(n).

A236216 Sum of the tenth powers of the first n primes.

Original entry on oeis.org

1024, 60073, 9825698, 292300947, 26229725548, 164088217397, 2180082117846, 8311148375647, 49737659589296, 470444892889497, 1290073179870298, 6098657552288147, 19521316862440548, 41132799175724797, 93731931411554846, 268619401777067895, 779736155077709296
Offset: 1

Views

Author

Robert Price, Jan 20 2014

Keywords

Crossrefs

Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Partial sums of A030629.

Programs

  • Mathematica
    Table[Sum[Prime[k]^10, {k, n}], {n, 1000}]

Formula

a(n) = Sum_{k=1..n} prime(k)^10.

A350767 a(1)=1. Thereafter, a(n+1) is the least unused number k such that either d(j(n)) properly divides d(k) or d(k) properly divides d(j(n)), where j(n) = a(n)+1 and d is the divisor counting function A000005.

Original entry on oeis.org

1, 6, 8, 12, 10, 14, 2, 15, 48, 18, 20, 3, 28, 21, 5, 7, 11, 4, 22, 24, 32, 13, 17, 9, 19, 23, 26, 29, 27, 25, 30, 33, 31, 37, 40, 34, 41, 35, 49, 43, 47, 16, 38, 42, 39, 46, 44, 53, 51, 59, 45, 54, 56, 60, 50, 61, 66, 52, 55, 57, 67, 71, 58, 62, 72, 63, 192, 65
Offset: 1

Views

Author

David James Sycamore, Jan 14 2022

Keywords

Comments

If d(j(n)) is prime p then d(a(n+1)) must be properly divisible by p. In practice the proper divisor for computation of a(n+1) toggles between d(j(n)) and d(k).
Conjecture: This is a permutation of the positive integers. Numbers with the same number (tau) of divisors appear in their natural orders (e.g., primes, semiprimes, squares).
The plot, after the first few terms, resolves itself into points tightly packed on and around a straight line of slope 1, with exceptional points appearing as significant upward or downward "spikes".
When d(j(n)) is prime p appearing for the first time in the sequence J = {d(j(a(n)), n>=1}, then a(n+1) is the smallest number with 2p divisors, which produces a significantly large upward spike above the straight line (6, 12, 48, 192, 3072, 12288, ...).
When d(j(a(n)) is 2p, seen for the first time in J, then a(n+1) is the smallest number with p divisors, which produces a large downward spike, below the straight line (2, 4, 16, 64, 1024, 4096, ...).
The sequence of fixed points starts: 1, 46, 69, 74, 110, 140, 142, 152, 154, 178, ... apparently becoming denser as n increases.

Examples

			a(1)=1, so j(1)=2, d(j(1))=2, a prime, so we need the smallest unused k such that d(k) is properly divisible by 2, hence a(2)=6.
a(2)=6, j(2)=4, d(j(2))=3, a prime so we need the smallest unused k such that d(k) is properly divisible by 3, hence a(3)=8.
		

Crossrefs

Programs

Extensions

More terms from Michael De Vlieger, Jan 14 2022

A381316 Numbers whose powerful part (A057521) is a power of a prime with an exponent >= 3 (A246549).

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 80, 81, 88, 96, 104, 112, 120, 125, 128, 135, 136, 152, 160, 162, 168, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 296, 297, 304, 312, 320, 328, 336, 343, 344, 351, 352, 368, 375, 376, 378
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

First differs from A344653 and A345193 at n = 17: a(17) = 120 is not a term of these sequences.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., m} with m >= 3, i.e., any number (including zero) of 1's and then a single number >= 3.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} 1/(p*(p^2-1)) = A369632 / A013661 = 0.13463358553764438661... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 2 && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] > 2 && (#e == 1 || e[2] == 1));

A096329 Prime(p^10) where p is the n-th prime.

Original entry on oeis.org

8161, 733561, 174978379, 6065997263, 679646318387, 3851884421117, 61935696080369, 195412630499981, 1402090078377899, 15243760266373817, 30260601850590289, 186278471527230527, 534126386413471121, 870547653763149821, 2166779476441061129, 7419756995015118023
Offset: 1

Views

Author

Cino Hilliard, Aug 02 2004

Keywords

Comments

a(5)-a(7) from the Nth Prime Page.

Examples

			2^10 = 125, prime(1024) = 8161.
		

Crossrefs

Programs

Formula

a(n) ~ 10n^10 log^11 n. - Charles R Greathouse IV, Nov 02 2014
a(n) = A000040(A030629(n)). - Amiram Eldar, Jul 11 2024

Extensions

Edited and extended by Robert G. Wilson v, Aug 07 2004
a(8)-a(16) from Charles R Greathouse IV, Nov 02 2014

A280350 Numbers with 97 divisors.

Original entry on oeis.org

79228162514264337593543950336, 6362685441135942358474828762538534230890216321, 12621774483536188886587657044524579674771302961744368076324462890625, 1347137238494276547832006567721872890819326613454654477690085519113574118965817601, 9412343651268540526001186511911506574868063110469548823950876000379062365652829504091329792873336961
Offset: 1

Views

Author

Omar E. Pol, Jan 02 2017

Keywords

Comments

Also, 96th powers of primes.
More generally, the n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. In this case, p = 97.

Examples

			a(1) = 2^96, a(2) = 3^96, a(3) = 5^96, a(4) = 7^96, a(5) = 11^96.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)^96: n in [1..5]]; // Vincenzo Librandi, Jan 06 2017
  • Mathematica
    With[{p = 25}, Table[Prime[n]^(Prime[p] - 1), {n, 5}]] (* Michael De Vlieger, Jan 02 2017 *)
  • PARI
    a(n)=prime(n)^96
    

Formula

a(n) = A000040(n)^(97-1) = A000040(n)^96.
A000005(a(n)) = 97.
Previous Showing 31-39 of 39 results.