cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A238940 Powers of 4 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 4, 16, 64, 256, 16384, 65536, 262144, 16777216, 268435456, 4294967296, 17179869184, 68719476736, 4722366482869645213696, 75557863725914323419136, 77371252455336267181195264
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483.

Programs

  • Mathematica
    Select[4^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Aug 31 2021 *)
  • PARI
    for(n=0,99,vecmin(digits(4^n))&& print1(4^n","))

Formula

a(n)=4^A030701(n).

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A305933 Irregular table read by rows: row n >= 0 lists all k >= 0 such that the decimal representation of 3^k has n digits '0' (conjectured).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 19, 23, 24, 26, 27, 28, 31, 34, 68, 10, 15, 16, 17, 18, 20, 25, 29, 43, 47, 50, 52, 63, 72, 73, 22, 30, 32, 33, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 51, 53, 56, 58, 60, 61, 62, 64, 69, 71, 83, 93, 96, 108, 111, 123, 136, 21, 37, 49, 67, 75, 81, 82, 87, 90, 105, 112, 121, 129
Offset: 0

Views

Author

M. F. Hasler, Jun 14 2018

Keywords

Comments

The set of nonempty rows is a partition of the nonnegative integers.
Read as a flattened sequence, a permutation of the nonnegative integers.
In the same way, another choice of (basis, digit, base) = (m, d, b) different from (3, 0, 10) will yield a similar partition of the nonnegative integers, trivial if m is a multiple of b.
It remains an open problem to provide a proof that the rows are complete, just as each of the terms of A020665 is unproved.
We can also decide that the rows are to be truncated as soon as no term is found within a sufficiently large search limit. (For all of the displayed rows, there is no additional term up to many orders of magnitude beyond the last term.) That way the rows are well-defined, but we are no longer guaranteed to get a partition of the integers.
The author finds the idea of partitioning the integers in this elementary yet highly nontrivial way appealing, as is the fact that the initial rows are just roughly one line long. Will this property continue to hold for large n, or if not, how will the row lengths evolve?

Examples

			The table reads:
n \ k's
0 : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 19, 23, 24, 26, 27, 28, 31, 34, 68 (cf. A030700)
1 : 10, 15, 16, 17, 18, 20, 25, 29, 43, 47, 50, 52, 63, 72, 73
2 : 22, 30, 32, 33, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 51, 53, 56, 58, 60, 61, 62, 64, 69, 71, 83, 93, 96, 108, 111, 123, 136
3 : 21, 37, 49, 67, 75, 81, 82, 87, 90, 105, 112, 121, 129
4 : 35, 59, 65, 66, 70, 74, 77, 79, 88, 98, 106, 116, 117, 128, 130, 131, 197, 205
5 : 57, 76, 78, 80, 86, 89, 91, 92, 101, 102, 104, 109, 115, 118, 122, 127, 134, 135, 164, 166, 203, 212, 237
...
The first column is A063555: least k such that 3^k has n digits '0' in base 10.
Row lengths are 23, 15, 31, 13, 18, 23, 23, 25, 16, 17, 28, ... (A305943).
Last term of the rows (i.e., largest k such that 3^k has exactly n digits 0) are (68, 73, 136, 129, 205, 237, 317, 268, 251, 276, 343, ...), A306113.
Inverse permutation is (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 23, 10, 11, 12, 13, 24, 25, 26, 27, 14, 28, 69, 38, 15, 16, 29, 17, 18, 19, 30, 39, 20, ...), not in OEIS.
		

Crossrefs

Cf. A305932 (analog for 2^k), A305924 (analog for 4^k), ..., A305929 (analog for 9^k).
Cf. A305934: powers of 3 with exactly one '0', A305943: powers of 3 with at least one '0'.

Programs

  • PARI
    apply( A305933_row(n,M=50*n+70)=select(k->#select(d->!d,digits(3^k))==n,[0..M]), [0..10])
    print(apply(t->#t,%)"\n"apply(vecmax,%)"\n"apply(t->t-1,Vec(vecsort(concat(%),,1)[1..99]))) \\ to show row lengths, last elements, and inverse permutation.

A071531 Smallest exponent r such that n^r contains at least one zero digit (in base 10).

Original entry on oeis.org

10, 10, 5, 8, 9, 4, 4, 5, 1, 5, 4, 6, 7, 4, 3, 7, 4, 4, 1, 5, 3, 6, 6, 4, 6, 5, 5, 4, 1, 6, 2, 2, 3, 4, 5, 3, 4, 5, 1, 5, 3, 3, 4, 2, 5, 2, 2, 2, 1, 2, 2, 2, 4, 2, 5, 4, 6, 3, 1, 5, 6, 3, 2, 4, 6, 3, 9, 3, 1, 2, 6, 3, 3, 4, 8, 4, 2, 3, 1, 4, 5, 5, 2, 4, 3, 3, 6, 3, 1, 5, 5, 3, 3, 2, 7, 2, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Paul Stoeber (paul.stoeber(AT)stud.tu-ilmenau.de), Jun 02 2002

Keywords

Comments

For all n, a(n) is at most 40000, as shown below. Is 10 an upper bound?
If n has d digits, the numbers n, n^2, ..., n^k have a total of about N = k*(k+1)*d/2, and if these were chosen randomly the probability of having no zeros would be (9/10)^N. The expected number of d-digit numbers n with f(n)>k would be 9*10^(d-1)*(9/10)^N. If k >= 7, (9/10)^(k*(k+1)/2)*10 < 1 so we would expect heuristically that there should be only finitely many n with f(n) > 7. - Robert Israel, Jan 15 2015
The similar definition using "...exactly one digit 0..." would be ill-defined for all multiples of 100 and others (1001, ...). - M. F. Hasler, Jun 25 2018
When r=40000, one of the last five digits of n^r is always 0. Working modulo 10^5, we have 2^r=9736 and 5^r=90625, and both of these are idempotent; also, if gcd(n,10)=1, then n^r=1, and if 10|n, then n^r=0. Therefore the last five digits of n^r are always either 00000, 00001, 09736, or 90625. In particular, a(n) <= 40000. - Mikhail Lavrov, Nov 18 2021

Examples

			a(4)=5 because 4^1=4, 4^2=16, 4^3=64, 4^4=256, 4^5=1024 (has zero digit).
		

Crossrefs

Cf. A305941 for the actual powers n^k.
Cf. A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944: decimal expansion of k^n contains no zeros, k = 2, 3, 4, ...
Cf. A305932, A305933, A305924, ..., A305929: row n = {k: x^k has n 0's}, x = 2, 3, ..., 9.
Cf. A305942, ..., A305947, A305938, A305939: #{k: x^k has n 0's}, x = 2, 3, ..., 9.
Cf. A306112, ..., A306119: largest k: x^k has n 0's; x = 2, 3, ..., 9.

Programs

  • Maple
    f:= proc(n) local j;
    for j from 1 do if has(convert(n^j,base,10),0) then return j fi od:
    end proc:
    seq(f(n),n=2..100); # Robert Israel, Jan 15 2015
  • Mathematica
    zd[n_]:=Module[{r=1},While[DigitCount[n^r,10,0]==0,r++];r]; Array[zd,110,2] (* Harvey P. Dale, Apr 15 2012 *)
  • PARI
    A071531(n)=for(k=1, oo, vecmin(digits(n^k))||return(k)) \\ M. F. Hasler, Jun 23 2018
  • Python
    def a(n):
        r, p = 1, n
        while 1:
            if "0" in str(p):
                return r
            r += 1
            p *= n
    [a(n) for n in range(2, 100)] # Tim Peters, May 19 2005
    

Formula

a(n) >= 1 with equality iff n is in A011540 \ {0} = {10, 20, ..., 100, 101, ...}. - M. F. Hasler, Jun 23 2018

A131613 Numbers k such that the decimal expansion of 3^k contains no 9.

Original entry on oeis.org

0, 1, 3, 4, 5, 7, 8, 11, 12, 16, 19, 20, 21, 29, 32, 56
Offset: 1

Views

Author

Shyam Sunder Gupta, Sep 01 2007

Keywords

Comments

I conjecture that 56 is the last term.

Crossrefs

Numbers k such that the decimal expansion of 3^k contains no m: A030700 (m=0), A131627 (m=1), A131625 (m=2), A131629 (m=3), A131618 (m=4), A131617 (m=5), A131616 (m=6), A131615 (m=7), A131614 (m=8), this sequence (m=9).
Cf. A007377.

Programs

  • Magma
    [n: n in [0..1000] | not 9 in Intseq(3^n) ]; // Vincenzo Librandi, May 06 2015
  • Mathematica
    Join[{0}, Select[ Range@10000, FreeQ[ IntegerDigits[3^# ], 9] &]]

Extensions

Adapted Mma and initial 0 added by Vincenzo Librandi, May 06 2015

A239008 Exponents m such that the decimal expansion of 3^m exhibits its first zero from the right later than any previous exponent.

Original entry on oeis.org

0, 3, 5, 7, 9, 11, 13, 19, 23, 24, 26, 28, 31, 34, 52, 65, 68, 136, 237, 4947, 7648, 42073, 50693, 52728, 395128, 2544983, 6013333, 76350564, 160451107, 641814146, 5291528429, 5856442430, 7307126644, 11577159988, 51444010646, 60457925746
Offset: 1

Views

Author

Keywords

Comments

Assume that a zero precedes all decimal expansions. This will take care of those cases in A030700.
Inspired by the Seqfan list discussion Re: "possible sequence", beginning with David Wilson 7:57 PM Mar 06 2014 and continued by M. F. Hasler, Allan Wechsler and Franklin T. Adams-Watters.
Location of first zeros (from the right) of terms: 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 21, 22, 34, 57, 82, 84, 99, 103, 104, 139, 144, 151, 166, 169, 173, 202, 204, 205, 220, 230, 233, 236. - Chai Wah Wu, Jan 06 2020

Examples

			Obviously a(1) is 0. a(2) is 3 since this is the first exponent which yields a two-digit (nonzero) power of three.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[3, n, 10^500]]], 0, 1, 1][[1, 1]]; k = 1; mx = 0; lst = {}; While[k < 200000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

a(30)-a(34) from Bert Dobbelaere, Jan 21 2019
a(35)-a(36) from Chai Wah Wu, Jan 06 2020

A305934 Powers of 3 that have exactly one digit '0' in base 10.

Original entry on oeis.org

59049, 14348907, 43046721, 129140163, 387420489, 3486784401, 847288609443, 68630377364883, 328256967394537077627, 26588814358957503287787, 717897987691852588770249, 6461081889226673298932241, 1144561273430837494885949696427, 22528399544939174411840147874772641, 67585198634817523235520443624317923
Offset: 1

Views

Author

M. F. Hasler (following a suggestion by Zak Seidov), Jun 14 2018

Keywords

Comments

Motivated by A030700: decimal expansion of 3^n contains no zeros (probably finite).
It appears that this sequence is finite. Is a(15) = 3^73 the last term?
There are no more terms through at least 3^(10^7) (which is a 4771213-digit number). It seems nearly certain that no power of 3 containing this many or more decimal digits could have fewer than two '0' digits. (Among numbers of the form 3^k with 73 < k <= 10^7, the only one having fewer than two '0' digits among its final 200 digits is 3^5028978.) - Jon E. Schoenfield, Jun 24 2018
The first 6 terms coincide with A305931: powers of 3 having at least one digit 0, with complement A238939 (within A000244: powers of 3) conjectured to be finite, too. Then, a(7..8) = A305931(9..10), etc.

Crossrefs

Cf. A030700: decimal expansion of 3^n contains no zeros (probably finite), A238939: powers of 3 with no digit '0' in their decimal expansion, A000244: powers of 3.
Subsequence of A305931: powers of 3 having at least one '0'.
Cf. A305933: row n = { k | 3^k has n digits '0' }.

Programs

  • Mathematica
    Select[3^Range[120], DigitCount[#, 10, 0] == 1 &] (* Michael De Vlieger, Jul 01 2018 *)
  • PARI
    for(n=1,99, #select(t->!t,digits(3^n))==1&& print1(3^n","))

Formula

a(n) = 3^A305933(1,n).

A050724 Numbers k such that the decimal expansion of 3^k contains no pair of consecutive equal digits (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 24, 26, 42, 66, 67, 133
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

No additional terms up to 50000. - Harvey P. Dale, Nov 15 2011
No additional terms up to 100000. - Michel Marcus, Oct 16 2019

Examples

			3^133 = 2865014852390475710679572105323242035759805416923029389510561523.
		

Crossrefs

Programs

  • Maple
    q:= n-> (s-> andmap(i-> s[i]<>s[i+1], [$1..length(s)-1]))(""||(3^n)):
    select(q, [$0..200])[];  # Alois P. Heinz, Mar 07 2024
  • Mathematica
    Select[Range[0,500],!MemberQ[Differences[IntegerDigits[3^#]],0]&] (* Harvey P. Dale, Nov 15 2011 *)
  • PARI
    isok(n) = {my(d = digits(3^n), c = d[1]); for (i=2, #d, if (d[i] == c, return (0)); c = d[i];); return (1);} \\ Michel Marcus, Oct 16 2019

A305931 Powers of 3 having at least one digit '0' in their decimal representation.

Original entry on oeis.org

59049, 14348907, 43046721, 129140163, 387420489, 3486784401, 10460353203, 31381059609, 847288609443, 68630377364883, 205891132094649, 1853020188851841, 5559060566555523, 50031545098999707, 150094635296999121, 450283905890997363, 1350851717672992089, 4052555153018976267, 12157665459056928801
Offset: 1

Views

Author

M. F. Hasler, Jun 15 2018

Keywords

Comments

The analog of A298607 for 3^k instead of 2^k.
The complement A238939 is conjectured to have only 23 elements, the largest being 3^68. Thus, all larger powers of 3 are (conjectured to be) in this sequence. Each of the subsequences "powers of 3 with exactly n digits 0" is conjectured to be finite. Provided there is at least one such element for each n >= 0, this leads to a partition of the integers, given in A305933.

Crossrefs

Cf. A030700 = row 0 of A305933: decimal expansion of 3^n contains no zeros.
Complement (within A000244: powers of 3) of A238939: powers of 3 with no digit '0' in their decimal expansion.
Analog of A298607: powers of 2 with the digit '0' in their decimal expansion.
The first six terms coincide with the finite sequence A305934: powers of 3 having exactly one digit 0.

Programs

  • Mathematica
    Select[3^Range[0,40],DigitCount[#,10,0]>0&] (* Harvey P. Dale, May 30 2020 *)
  • PARI
    for(k=0,69, vecmin(digits(3^k))|| print1(3^k","))
    
  • PARI
    select( t->!vecmin(digits(t)), apply( k->3^k, [0..40]))

A305943 Number of powers of 3 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

23, 15, 31, 13, 18, 23, 23, 25, 16, 17, 28, 25, 22, 20, 18, 21, 19, 19, 18, 24, 33, 17, 17, 18, 17, 14, 21, 26, 25, 23, 24, 29, 17, 22, 18, 21, 27, 26, 20, 21, 13, 27, 24, 12, 18, 24, 16, 17, 15, 30, 24, 32, 24, 12, 16, 16, 23, 23, 20, 23, 19, 23, 10, 21, 20, 21, 23, 20, 19, 23, 23, 22, 16, 18, 20, 20, 13, 15, 25, 24, 28, 24, 21, 16, 14, 23, 21, 19, 23, 19, 27, 26, 22, 18, 27, 16, 31, 21, 18, 25, 24
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 23 is the number of terms in A030700 and in A238939, which include the power 3^0 = 1.
These are the row lengths of A305933. It remains an open problem to provide a proof that these rows are complete (as for all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishingly small, cf. Khovanova link.

Crossrefs

Cf. A030700 = row 0 of A305933: k s.th. 3^k has no '0'; A238939: these powers 3^k.
Cf. A305931, A305934: powers of 3 with at least / exactly one '0'.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063555 = column 1 of A305933: least k such that 3^k has n digits '0' in base 10.
Cf. A305942 (analog for 2^k), ..., A305947, A305938, A305939 (analog for 9^k).

Programs

  • PARI
    A305943(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(3^k))==n)
    
  • PARI
    A305943_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(3^k)),nMax)]++);a[^-1]}

A195985 Least prime such that p^2 is a zeroless n-digit number.

Original entry on oeis.org

2, 5, 11, 37, 107, 337, 1061, 3343, 10559, 33343, 105517, 333337, 1054133, 3333373, 10540931, 33333359, 105409309, 333333361, 1054092869, 3333333413, 10540925639, 33333333343, 105409255363, 333333333367, 1054092553583, 3333333333383, 10540925534207
Offset: 1

Views

Author

M. F. Hasler, Sep 26 2011

Keywords

Examples

			a(1)^2=4, a(2)^2=25, a(3)^2=121, a(4)^2=1369 are the least squares of primes with 1, 2, 3 resp. 4 digits, and these digits are all nonzero.
a(5)=107 since 101^2=10201 and 103^2=10609 both contain a zero digit, but 107^2=11449 does not.
a(1000)=[10^500/3]+10210 (500 digits), since primes below sqrt(10^999) = 10^499*sqrt(10) ~ 3.162e499 have squares of less than 1000 digits, between sqrt(10^999) and 10^500/3 = sqrt(10^1000/9) ~ 3.333...e499 they have at least one zero digit. Finally, the 7 primes between 10^500/3 and a(1000) also happen to have a "0" digit in their square, but not so
  a(1000)^2 = 11111...11111791755555...55555659792849
  = [10^500/9]*(10^500+5) + 6806*10^500+104237294.
		

Crossrefs

Programs

  • PARI
    a(n)={ my(p=sqrtint(10^n\9)-1); until( is_A052382(p^2), p=nextprime(p+2));p}
Previous Showing 21-30 of 35 results. Next