cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A195945 Powers of 13 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 13, 169, 2197, 28561, 371293, 62748517, 137858491849, 3937376385699289
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 3937376385699289 the largest term?
No further terms up to 13^25000. - Harvey P. Dale, Oct 01 2011
No further terms up to 13^45000. - Vincenzo Librandi, Jul 31 2013
No further terms up to 13^(10^9). - Daniel Starodubtsev, Mar 22 2020

Crossrefs

For other zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A195946 (x=11), A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944 and also A020665.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Magma
    [13^n: n in [0..2*10^4] | not 0 in Intseq(13^n)]; // Bruno Berselli, Sep 26 2011
  • Mathematica
    Select[13^Range[0,250],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Oct 01 2011 *)
  • PARI
    for(n=0,9999, is_A052382(13^n) && print1(13^n,","))
    

Formula

Equals A001022 intersect A052382 (as a set).
Equals A001022 o A195944 (as a function).

A195942 Zeroless prime powers (excluding primes): Intersection of A025475 and A052382.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1331, 1369, 1681, 1849, 2187, 2197, 3125, 3481, 3721, 4489, 4913, 5329, 6241, 6561, 6859, 6889, 7921, 8192
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Crossrefs

Programs

  • Haskell
    a195942 n = a195942_list !! (n-1)
    a195942_list = filter (\x -> a010051 x == 0 && a010055 x == 1) a052382_list
    -- Reinhard Zumkeller, Sep 27 2011
  • Mathematica
    mx = 10^10; t = {1}; p = 2; While[pw = 2; While[n = p^pw; n <= mx, If[Union[IntegerDigits[n]][[1]] > 0, AppendTo[t, n]]; pw++]; pw > 2, p = NextPrime[p]]; t = Sort[t] (* T. D. Noe, Sep 27 2011 *)
  • PARI
    for( n=1,9999, is_A025475(n) && is_A052382(n) && print1(n","))
    

Formula

A195942 = A025475 intersect A052382.
A010055(a(n)) * (1 - A010051(a(n))) * A168046(a(n)) = 1. - Reinhard Zumkeller, Sep 27 2011

A195948 Powers of 5 which have no zero in their decimal expansion.

Original entry on oeis.org

1, 5, 25, 125, 625, 3125, 15625, 78125, 1953125, 9765625, 48828125, 762939453125, 3814697265625, 931322574615478515625, 116415321826934814453125, 34694469519536141888238489627838134765625
Offset: 1

Views

Author

M. F. Hasler, Sep 25 2011

Keywords

Comments

Probably finite. Is 34694469519536141888238489627838134765625 the largest term?

Crossrefs

Programs

  • Mathematica
    Select[5^Range[0,60],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Aug 30 2016 *)
  • PARI
    for( n=0,9999, is_A052382(5^n) && print1(5^n,","))

Formula

a(n) = 5^A008839(n).
A000351 intersect A052382.

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A238938 Powers of 2 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 8192, 16384, 32768, 65536, 262144, 524288, 16777216, 33554432, 134217728, 268435456, 2147483648, 4294967296, 8589934592, 17179869184, 34359738368, 68719476736, 137438953472, 549755813888, 562949953421312, 2251799813685248, 147573952589676412928
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Examples

			256 = 2^8 is in the sequence because 256 has a 2, a 5 and a 6 but no 0's.
512 = 2^9 is also in because it has a 1, a 2 and a 5 but no 0's.
1024 = 2^10 is not in the sequence because it has a 0.
		

Crossrefs

Programs

  • Mathematica
    Select[2^Range[0, 127], DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Mar 07 2014 *)
  • PARI
    for(n=0,99,vecmin(digits(2^n))&& print1(2^n","))

Formula

a(n) = 2^A007377(n).

Extensions

'fini' keyword removed as finiteness is only conjectured by Max Alekseyev, Apr 10 2019

A238939 Powers of 3 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 177147, 531441, 1594323, 4782969, 1162261467, 94143178827, 282429536481, 2541865828329, 7625597484987, 22876792454961, 617673396283947, 16677181699666569, 278128389443693511257285776231761
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943, A103662.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[3^Range[0,100],DigitCount[#,10,0]==0&] (* Paolo Xausa, Oct 07 2023 *)
  • PARI
    for(n=0,99,vecmin(digits(3^n))&& print1(3^n","))

Formula

a(n) = 3^A030700(n).

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A238936 Powers of 6 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 6, 36, 216, 1296, 7776, 46656, 279936, 1679616, 2176782336, 16926659444736, 4738381338321616896, 36845653286788892983296, 17324272922341479351919144385642496
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Crossrefs

Programs

  • Mathematica
    Select[6^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Dec 03 2020 *)
  • PARI
    for(n=0,99,vecmin(digits(6^n))&& print1(6^n","))

Formula

a(n)=6^A030702(n).

Extensions

Keyword:fini and keyword:full removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A238940 Powers of 4 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 4, 16, 64, 256, 16384, 65536, 262144, 16777216, 268435456, 4294967296, 17179869184, 68719476736, 4722366482869645213696, 75557863725914323419136, 77371252455336267181195264
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2014

Keywords

Comments

Conjectured to be finite and complete. See the OEIS wiki page for further information, references and links.

Crossrefs

For the zeroless numbers (powers x^n), see A238938, A238939, A238940, A195948, A238936, A195908, A195946, A195945, A195942, A195943.
For the corresponding exponents, see A007377, A008839, A030700, A030701, A030702, A030703, A030704, A030705, A030706, A195944.
For other related sequences, see A052382, A027870, A102483.

Programs

  • Mathematica
    Select[4^Range[0,50],DigitCount[#,10,0]==0&] (* Harvey P. Dale, Aug 31 2021 *)
  • PARI
    for(n=0,99,vecmin(digits(4^n))&& print1(4^n","))

Formula

a(n)=4^A030701(n).

Extensions

Keyword:fini removed by Jianing Song, Jan 28 2023 as finiteness is only conjectured.

A071531 Smallest exponent r such that n^r contains at least one zero digit (in base 10).

Original entry on oeis.org

10, 10, 5, 8, 9, 4, 4, 5, 1, 5, 4, 6, 7, 4, 3, 7, 4, 4, 1, 5, 3, 6, 6, 4, 6, 5, 5, 4, 1, 6, 2, 2, 3, 4, 5, 3, 4, 5, 1, 5, 3, 3, 4, 2, 5, 2, 2, 2, 1, 2, 2, 2, 4, 2, 5, 4, 6, 3, 1, 5, 6, 3, 2, 4, 6, 3, 9, 3, 1, 2, 6, 3, 3, 4, 8, 4, 2, 3, 1, 4, 5, 5, 2, 4, 3, 3, 6, 3, 1, 5, 5, 3, 3, 2, 7, 2, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Paul Stoeber (paul.stoeber(AT)stud.tu-ilmenau.de), Jun 02 2002

Keywords

Comments

For all n, a(n) is at most 40000, as shown below. Is 10 an upper bound?
If n has d digits, the numbers n, n^2, ..., n^k have a total of about N = k*(k+1)*d/2, and if these were chosen randomly the probability of having no zeros would be (9/10)^N. The expected number of d-digit numbers n with f(n)>k would be 9*10^(d-1)*(9/10)^N. If k >= 7, (9/10)^(k*(k+1)/2)*10 < 1 so we would expect heuristically that there should be only finitely many n with f(n) > 7. - Robert Israel, Jan 15 2015
The similar definition using "...exactly one digit 0..." would be ill-defined for all multiples of 100 and others (1001, ...). - M. F. Hasler, Jun 25 2018
When r=40000, one of the last five digits of n^r is always 0. Working modulo 10^5, we have 2^r=9736 and 5^r=90625, and both of these are idempotent; also, if gcd(n,10)=1, then n^r=1, and if 10|n, then n^r=0. Therefore the last five digits of n^r are always either 00000, 00001, 09736, or 90625. In particular, a(n) <= 40000. - Mikhail Lavrov, Nov 18 2021

Examples

			a(4)=5 because 4^1=4, 4^2=16, 4^3=64, 4^4=256, 4^5=1024 (has zero digit).
		

Crossrefs

Cf. A305941 for the actual powers n^k.
Cf. A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944: decimal expansion of k^n contains no zeros, k = 2, 3, 4, ...
Cf. A305932, A305933, A305924, ..., A305929: row n = {k: x^k has n 0's}, x = 2, 3, ..., 9.
Cf. A305942, ..., A305947, A305938, A305939: #{k: x^k has n 0's}, x = 2, 3, ..., 9.
Cf. A306112, ..., A306119: largest k: x^k has n 0's; x = 2, 3, ..., 9.

Programs

  • Maple
    f:= proc(n) local j;
    for j from 1 do if has(convert(n^j,base,10),0) then return j fi od:
    end proc:
    seq(f(n),n=2..100); # Robert Israel, Jan 15 2015
  • Mathematica
    zd[n_]:=Module[{r=1},While[DigitCount[n^r,10,0]==0,r++];r]; Array[zd,110,2] (* Harvey P. Dale, Apr 15 2012 *)
  • PARI
    A071531(n)=for(k=1, oo, vecmin(digits(n^k))||return(k)) \\ M. F. Hasler, Jun 23 2018
  • Python
    def a(n):
        r, p = 1, n
        while 1:
            if "0" in str(p):
                return r
            r += 1
            p *= n
    [a(n) for n in range(2, 100)] # Tim Peters, May 19 2005
    

Formula

a(n) >= 1 with equality iff n is in A011540 \ {0} = {10, 20, ..., 100, 101, ...}. - M. F. Hasler, Jun 23 2018

A305947 Number of powers of 7 having exactly n digits '0' (in base 10), conjectured.

Original entry on oeis.org

10, 11, 12, 13, 9, 10, 9, 7, 10, 14, 21, 10, 18, 7, 11, 11, 12, 15, 17, 10, 11, 6, 10, 16, 13, 9, 7, 9, 11, 12, 10, 16, 7, 16, 9, 14, 13, 13, 9, 17, 14, 12, 11, 9, 13, 9, 12, 12, 9, 12, 14
Offset: 0

Views

Author

M. F. Hasler, Jun 22 2018

Keywords

Comments

a(0) = 10 is the number of terms in A030703 and in A195908, which includes the power 7^0 = 1.
These are the row lengths of A305927. It remains an open problem to provide a proof that these rows are complete (as for all terms of A020665), but the search has been pushed to many orders of magnitude beyond the largest known term, and the probability of finding an additional term is vanishing, cf. Khovanova link.

Crossrefs

Cf. A030703 (= row 0 of A305927): k such that 7^k has no 0's; A195908: these powers 7^k.
Cf. A020665: largest k such that n^k has no '0's.
Cf. A063606 (= column 1 of A305927): least k such that 7^k has n digits '0' in base 10.
Cf. A305942 (analog for 2^k), ..., A305946, A305938, A305939 (analog for 9^k).

Programs

  • PARI
    A305947(n,M=99*n+199)=sum(k=0,M,#select(d->!d,digits(7^k))==n)
    
  • PARI
    A305947_vec(nMax,M=99*nMax+199,a=vector(nMax+=2))={for(k=0,M,a[min(1+#select(d->!d,digits(7^k)),nMax)]++);a[^-1]}

A239012 Exponents m such that the decimal expansion of 7^m exhibits its first zero from the right later than any previous exponent.

Original entry on oeis.org

0, 2, 3, 6, 10, 11, 19, 35, 127, 131, 175, 207, 1235, 2470, 2651, 1241310, 1922910, 471056338, 1001431598, 1720335627, 4203146094, 5353516238, 21838571507, 25770284079, 40822793867
Offset: 1

Views

Author

Keywords

Comments

Assume that a zero precedes all decimal expansions. This will take care of those cases in A030703.
Inspired by the seqfan list discussion Re: "possible sequence", beginning with David Wilson 7:57 PM Mar 06 2014 and continued by M. F. Hasler, Allan C. Wechsler and Franklin T. Adams-Watters.

Crossrefs

Programs

  • Mathematica
    f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[7, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 500000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

a(19)-a(22) from Bert Dobbelaere, Jan 21 2019
a(23)-a(25) from Chai Wah Wu, Jan 15 2020
Previous Showing 11-20 of 25 results. Next