cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A263474 Total number of positive integers < 10^n with multiplicative digital root value 6.

Original entry on oeis.org

1, 14, 155, 1172, 6843, 43538, 318457, 2223803, 14185700, 84670477, 477808607, 2577052118, 13759255632, 75251167843, 418157757456, 2267313716636, 11616142299625, 55909713312571, 257522103127082, 1182251998919171, 5791219719115580, 32715779086392723
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263480.

Crossrefs

Programs

  • Mathematica
    lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 6 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 6, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263470(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + A263473(n) + a(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).

Extensions

a(9)-a(22) from Hiroaki Yamanouchi, Oct 25 2015

A263475 Total number of positive integers < 10^n with multiplicative digital root value 8.

Original entry on oeis.org

1, 23, 161, 1050, 5971, 32658, 187197, 1057467, 5495088, 25862850, 112452321, 501114082, 2867532188, 21469965415, 164448147485, 1116524049413, 6550885669936, 33615367021792, 154093286995596, 651413912544125, 2703190211181211, 12293485890559055
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263481.

Crossrefs

Programs

  • Mathematica
    lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 8 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 8, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263470(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + A263473(n) + A263474(n) + A000217(n) + a(n) + A000292(n) = A002283(n).

Extensions

a(9)-a(22) from Hiroaki Yamanouchi, Oct 25 2015

A263476 Total number of n-digit positive integers with multiplicative digital root value 0.

Original entry on oeis.org

0, 24, 452, 6263, 75662, 820207, 8491909, 86727773, 879578102, 8878382430, 89326016765, 896499124003, 8981948713433, 89902031287356, 899441785434096, 8996797304009863, 89981980972837834, 899900967867894143, 8999467457237611688, 89997196286115385871
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263470.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range[0, 10^6 - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 0 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 0, 1, 0));  \\ Altug Alkan, Oct 19 2015

Formula

a(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + A263479(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(20) from Hiroaki Yamanouchi, Oct 25 2015

A263477 Total number of n-digit positive integers with multiplicative digital root value 2.

Original entry on oeis.org

1, 8, 68, 466, 2670, 13460, 69420, 417722, 3025242, 21873040, 136901413, 722201372, 3271729383, 13114173697, 48104723380, 167526488628, 574289772576, 1988721563904, 7000834741144, 24759698208450, 86342520209963, 292206955736762, 950480594161453
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263471.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 2 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 2, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + a(n) + A000027(n) + A263478(n) + A263479(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A263478 Total number of n-digit positive integers with multiplicative digital root value 4.

Original entry on oeis.org

1, 9, 55, 214, 615, 1451, 3829, 60180, 939045, 8732485, 56961531, 289887214, 1229099287, 4756606869, 24218431805, 233925901576, 2661527233449, 25685325408201, 203451565638511, 1356903584035110, 7832822232934951, 40022453239462639, 184228949831881593
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263472.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 4 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 4, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + a(n) + A263479(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A263480 Total number of n-digit positive integers with multiplicative digital root value 6.

Original entry on oeis.org

1, 13, 141, 1017, 5671, 36695, 274919, 1905346, 11961897, 70484777, 393138130, 2099243511, 11182203514, 61491912211, 342906589613, 1849155959180, 9348828582989, 44293571012946, 201612389814511, 924729895792089, 4608967720196409, 26924559367277143
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263474.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 6 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 6, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + A263479(n) + a(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(22) from Hiroaki Yamanouchi, Oct 25 2015

A263481 Total number of n-digit positive integers with multiplicative digital root value 8.

Original entry on oeis.org

1, 22, 138, 889, 4921, 26687, 154539, 870270, 4437621, 20367762, 86589471, 388661761, 2366418106, 18602433227, 142978182070, 952075901928, 5434361620523, 27064481351856, 120477919973804, 497320625548529, 2051776298637086, 9590295679377844, 54933121828772931
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263475.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 8 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 8, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + A263479(n) + A263480(n) + A000027(n) + a(n) + A000217(n) = A052268(n).

Extensions

a(9)-a(23) from Hiroaki Yamanouchi, Oct 25 2015

A350186 Numbers of multiplicative persistence 7 which are themselves the product of digits of a number.

Original entry on oeis.org

338688, 826686, 2239488, 3188646, 6613488, 14224896, 3416267673274176, 6499837226778624
Offset: 1

Views

Author

Daniel Mondot, Jan 15 2022

Keywords

Comments

The multiplicative persistence of a number mp(n) is the number of times the product of digits function p(n) must be applied to reach a single digit, i.e., A031346(n).
The product of digits function partitions all numbers into equivalence classes. There is a one-to-one correspondence between values in this sequence and equivalence classes of numbers with multiplicative persistence 8.
There are infinitely many numbers with mp of 1 to 11, but the classes of numbers (p(n)) are postulated to be finite for sequences A350181....
Equivalently:
This sequence consists of the numbers A007954(k) such that A031346(k) = 8,
These are the numbers k in A002473 such that A031346(k) = 7,
Or:
- they factor into powers of 2, 3, 5 and 7 exclusively.
- p(n) goes to a single digit in 7 steps.
Postulated to be finite and complete.
a(9), if it exists, is > 10^20000, and likely > 10^119000.

Examples

			338688 is in this sequence because:
- 338688 goes to a single digit in 7 steps: p(338688) = 27648, p(27648) = 2688, p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0.
- p(4478976) = p(13477889) = 338688, etc.
		

Crossrefs

Cf. A002473, A003001 (smallest number with multiplicative persistence n), A031346 (multiplicative persistence), A031347 (multiplicative digital root), A046516 (all numbers with mp of 7).
Cf. A350180, A350181, A350182, A350183, A350184, A350185, A350187 (numbers with mp 1 to 6 and 8 to 10 that are themselves 7-smooth numbers).

Programs

  • Mathematica
    mx=10^16;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}];
    Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==7&]  (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)

A064702 Nonnegative numbers such that additive and multiplicative digital roots coincide.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 123, 132, 137, 139, 168, 173, 179, 186, 188, 193, 197, 213, 231, 233, 267, 276, 299, 312, 317, 319, 321, 323, 332, 346, 364, 371, 389, 391, 398, 436, 463, 618, 627, 634, 643, 672, 681, 713, 719, 726, 731, 762, 791, 816, 818, 839
Offset: 1

Views

Author

Santi Spadaro, Oct 12 2001

Keywords

Comments

If k is in this sequence then all permutations of (the digits of) k are in this sequence.
A010888(a(n)) = A031347(a(n)). - Reinhard Zumkeller, Jul 10 2013

Crossrefs

Programs

  • Haskell
    a064702 n = a064702_list !! (n-1)
    a064702_list = filter (\x -> a010888 x == a031347 x) [1..]
    -- Reinhard Zumkeller, Jul 10 2013
    
  • Maple
    A007954 := proc(n) return mul(d, d=convert(n,base,10)): end: A031347 := proc(n) local m: m:=n: while(length(m)>1)do m:=A007954(m): od: return m: end: A064702 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(A031347(k)-1 = (k-1) mod 9)then return k: fi: od: end: seq(A064702(n),n=1..56); # Nathaniel Johnston, May 04 2011
  • Mathematica
    okQ[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]== NestWhile[ Total[ IntegerDigits[ #]]&, n,#>9&]; Select[Range[1000],okQ]  (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    is(n) = my(cn = n); while(cn > 9, d = digits(cn); cn = prod(i = 1, #d, d[i])); cn - 1 == (n-1)%9 \\ David A. Corneth, Aug 23 2018
    
  • Python
    from math import prod
    def A010888(n):
        while n > 9: n = sum(map(int, str(n)))
        return n
    def A031347(n):
        while n > 9: n = prod(map(int, str(n)))
        return n
    def ok(n): return A010888(n) == A031347(n)
    print([k for k in range(840) if ok(k)]) # Michael S. Branicky, Sep 17 2022

Extensions

Definition rephrased by Reinhard Zumkeller, Jul 10 2013
Initial 0 added by Halfdan Skjerning, Aug 21 2018

A087471 Final digit resulting from iterations of the product of the two numbers formed from the alternating digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 3, 6, 9, 2, 5, 8, 2, 8, 4, 0, 4, 8, 2, 6, 0, 8, 6, 6, 8, 0, 5, 0, 5, 0, 0, 0, 5, 0, 0, 0, 6, 2, 8, 8, 0, 8, 8, 6, 0, 0, 7, 4, 2, 6, 5, 8, 8, 0, 8, 0, 8, 6, 8, 6, 0, 6, 0, 8, 4, 0, 9, 8, 4, 8, 0, 0, 8, 4, 8, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy and Paul D. Hanna, Sep 11 2003

Keywords

Comments

A087472(n) gives the number of iterations required for Murthy's function, f(n), to reach a single digit. A087473(n) gives the smallest number that requires n iterations of Murthy's function to reach a single digit. The n-th row of triangle A087474 gives the n successive iterations of Murthy's function on A087473(n).
Apart from the undefined a(0), the sequence differs from A031347 first at n=121. [From R. J. Mathar, Sep 11 2008]

Examples

			a(1234) = a(13*24) = a(312) = a(32*1) = a(32) = a(3*2) = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[NestWhile[With[{idn=IntegerDigits[#]},FromDigits[Take[idn,{1,-1,2}]] FromDigits[Take[idn,{2,-1,2}]]]&,n,#>9&],{n,110}] (* Harvey P. Dale, Dec 05 2014 *)

Formula

a(n) = a(f(n)), where f(n) is Murthy's function: f(1234)=13*24=312, f(12345)=135*24=3240, f(123456)=135*246=33210.
Previous Showing 31-40 of 68 results. Next