cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A238240 Positive integers n such that x^2 - 20xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

18, 35, 50, 63, 72, 74, 83, 90, 95, 98, 99, 107, 140, 162, 171, 200, 215, 227, 252, 266, 275, 288, 296, 315, 332, 347, 359, 360, 362, 371, 380, 387, 392, 395, 396, 407, 428, 450, 491, 495, 530, 539, 560, 567, 602, 623, 626, 635, 648, 666, 684, 695, 711, 722, 743, 747, 755, 770, 791, 794, 800, 810
Offset: 1

Views

Author

Colin Barker, Feb 20 2014

Keywords

Comments

Positive integers n such that x^2 - 99 y^2 + n = 0 has integer solutions. - Robert Israel, Oct 22 2024

Examples

			63 is in the sequence because x^2 - 20xy + y^2 + 63 = 0 has integer solutions, for example (x, y) = (1, 16).
		

Crossrefs

Cf. A075839 (n = 18), A221763 (n = 63), A198947 (n = 90), A001085 (n = 99).

Programs

  • Maple
    filter:= t -> [isolve(99*y^2 - z^2 = t)] <> []:
    select(filter, [$1..1000]); # Robert Israel, Oct 22 2024

Extensions

Corrected by Robert Israel, Oct 22 2024

A031364 Number of coincidence site modules of index 10n+1 in an icosahedral module.

Original entry on oeis.org

1, 0, 0, 5, 6, 0, 0, 0, 10, 0, 24, 0, 0, 0, 0, 20, 0, 0, 40, 30, 0, 0, 0, 0, 30, 0, 0, 0, 60, 0, 64, 0, 0, 0, 0, 50, 0, 0, 0, 0, 84, 0, 0, 120, 60, 0, 0, 0, 50, 0, 0, 0, 0, 0, 144, 0, 0, 0, 120, 0, 124, 0, 0, 80, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 200, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) is nonzero iff n is of the form x^2+x*y+y^2 (A031363).

References

  • Michael Baake, "Solution of coincidence problem in dimensions d<=4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.

Crossrefs

Cf. A031363.

Formula

Dirichlet series: ((1+5^(-s))/(1-5^(1-s))) * Product_{p = +-2 (mod 5)} ((1+p^(-2*s))/(1-p^(2*(1-s)))) * Product_{p = +-1 (mod 5)} ((1+p^(-s))/(1-p^(1-s)))^2. - Sean A. Irvine, Apr 29 2020

Extensions

Missing a(8)=0 and more terms from Sean A. Irvine, Apr 29 2020

A263850 Let R = Z[(1+sqrt(5))/2] denote the ring of integers in the real quadratic number field of discriminant 5. Then a(n) is the largest integer k such that every totally positive element of norm n in R can be written as a sum of three squares in R in at least k ways, or 0 if there is no totally positive element of norm n.

Original entry on oeis.org

1, 6, 0, 0, 12, 24, 0, 0, 0, 32, 0, 24, 0, 0, 0, 0, 54, 0, 0, 24, 24, 0, 0, 0, 0, 30, 0, 0, 0, 24, 0, 48, 0, 0, 0, 0, 48, 0, 0, 0, 0, 96, 0, 0, 24, 48, 0, 0, 0, 96, 0, 0, 0, 0, 0, 48, 0, 0, 0, 24, 0, 120, 0, 0, 108, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 72, 0, 0, 48, 120, 54, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2015

Keywords

Comments

The terms were computed with the aid of Magma by David Durstoff, Nov 11 2015. See A263849 for further information.
Note that there are examples of totally positive elements x and y in R which have the same norm, but for which the number of ways of writing x as a sum of three squares in R is different to the number of ways of writing y as a sum of three squares in R. See A263849 for explicit examples. - Robin Visser, Mar 28 2025

References

  • Maass, Hans. Über die Darstellung total positiver Zahlen des Körpers R (sqrt(5)) als Summe von drei Quadraten, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. Vol. 14. No. 1, pp. 185-191, 1941.

Crossrefs

Cf. A263849 (another version of this sequence), A031363, A035187.
Cf. A005875 (sum of 3 squares in Z), A000118 (sum of 4 squares in Z).

Programs

  • Sage
    import itertools
    def a(n):
        if n==0: return 1
        if any([((r[0]%5 in [2,3]) and (r[1]%2==1)) for r in factor(n)]): return 0
        K. = NumberField(x^2-x-1); cw = w.coordinates_in_terms_of_powers(); ans = []
        for idl in K.ideals_of_bdd_norm(n)[n]:
            for u in [1,-1,w,-w]:
                X,Y = cw(u*idl.gens_reduced()[0]); num = 0
                if (X < 0): continue
                for b in range(-isqrt(X), isqrt(X)+1):
                    for d in range(-isqrt(X-b^2), isqrt(X-b^2)+1):
                        for f in range(-isqrt(X-b^2-d^2), isqrt(X-b^2-d^2)+1):
                            S = b^2+d^2+f^2; M = isqrt(X-S);
                            for (a,c,e) in itertools.product(range(-M, M+1), repeat=3):
                                if (a^2+c^2+e^2+S==X) and (2*(a*b+c*d+e*f)+S==Y): num += 1
                if (num > 0): ans.append(num)
        return min(ans)  # Robin Visser, Mar 28 2025

A316621 Numbers of the form x^2 + 9*x*y + y^2, 0 <= x <= y.

Original entry on oeis.org

0, 1, 4, 9, 11, 16, 23, 25, 36, 37, 44, 49, 53, 64, 67, 71, 81, 91, 92, 99, 100, 113, 119, 121, 133, 137, 144, 148, 163, 169, 176, 179, 191, 196, 207, 212, 221, 225, 247, 253, 256, 268, 275, 284, 287, 289, 317, 323, 324, 331, 333, 361, 364, 368, 379, 389, 396, 400, 401, 407, 421, 427, 441, 443, 449
Offset: 1

Views

Author

Gheorghe Coserea, Jul 29 2018

Keywords

Comments

Discriminant 77.
In general, for k>=0 the positive part of the set S = {x^2 - k*x*y + y^2: x,y in Z} is given by the numbers of the form x^2 + k*x*y + y^2 with 0 <= x <= y natural numbers.

Crossrefs

Numbers representable as x^2 + k*x*y + y^2 with 0 <= x <= y, for k=0..9: A001481(k=0), A003136(k=1), A000290(k=2), A031363(k=3), A084916(k=4), A243172(k=5), A242663(k=6), A243174(k=7), A243188(k=8), this sequence.

Programs

  • PARI
    seq(M,k=9) = { \\ assume k >= 0
    setintersect([1..M], setbinop((x,y)->x^2 + k*x*y + y^2, [0..1+sqrtint(M)]));
    };
    concat(0, seq(449))

A336403 Multiplicative closure of A045468: numbers which are the product of zero or more primes which are 1 or 4 mod 5.

Original entry on oeis.org

1, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 121, 131, 139, 149, 151, 179, 181, 191, 199, 209, 211, 229, 239, 241, 251, 269, 271, 281, 311, 319, 331, 341, 349, 359, 361, 379, 389, 401, 409, 419, 421, 431, 439, 449, 451, 461, 479, 491, 499, 509
Offset: 1

Views

Author

David Friend, Jul 20 2020

Keywords

Comments

The subsequence of A089270 which excludes terms divisible by 5.

Crossrefs

Cf. A031363 and its subset A089270 and its subset A038872 and its subset A045468.

Formula

Numbers of the form r^2 + 3*r*s + s^2 not divisible by 5, where r and s are relatively prime and r > s >= 0.

Extensions

New name and general cleanup by Charles R Greathouse IV, Sep 09 2022

A035233 Indices of the nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m= -43.

Original entry on oeis.org

1, 4, 9, 11, 13, 16, 17, 23, 25, 31, 36, 41, 43, 44, 47, 49, 52, 53, 59, 64, 67, 68, 79, 81, 83, 92, 97, 99, 100, 101, 103, 107, 109, 117, 121, 124, 127, 139, 143, 144, 153, 164, 167, 169, 172, 173, 176, 181, 187, 188, 193, 196, 197, 207, 208, 212, 221, 225
Offset: 1

Views

Author

Keywords

Comments

Also, positive numbers of the form x^2 + xy + 11y^2 (discriminant -43).

Crossrefs

Cf. A106891 (Primes of the form x^2 + xy + 11y^2).

Programs

  • PARI
    m=-43; select(x -> x, direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020

Extensions

More terms from Colin Barker, Jun 19 2014

A238245 Positive integers n such that x^2 - 22xy + y^2 + n = 0 has integer solutions.

Original entry on oeis.org

20, 39, 56, 71, 80, 84, 95, 104, 111, 116, 119, 120, 156, 180, 191, 224, 239, 255, 284, 296, 311, 320, 336, 351, 359, 380, 399, 404, 416, 431, 444, 455, 464, 471, 476, 479, 480, 500, 504, 551, 596, 599, 624, 639, 680, 695, 696, 719, 720, 756, 764, 791, 824
Offset: 1

Views

Author

Colin Barker, Feb 20 2014

Keywords

Examples

			39 is in the sequence because x^2 - 22xy + y^2 + 39 = 0 has integer solutions, for example (x, y) = (2, 43).
		

Crossrefs

Cf. A157014 (n = 20), A137881 (n = 104), A077422 (n = 120), A133275 (n = 180).

A240469 Values k where the maximum number of distinct rational solutions to x^2 - Dy^2 = t, 0 < D <= k, 0 < t <= k, achieves a new record.

Original entry on oeis.org

1, 2, 7, 10, 17, 32, 73, 144, 241, 336, 360, 720, 1080, 1260
Offset: 1

Views

Author

Ralf Stephan, Apr 06 2014

Keywords

Comments

Record values are in A240470.

Examples

			All Diophantine equations x^2 - Dy^2 = t, 0 < D <= 16, 0 < t <= 16, D squarefree, have fewer than 4 distinct solutions; the first with 4 solutions is x^2 - 17y^2 = 16 with the solutions (x,y) = (9/2,1/2), (21,5), (4,0), (13,3), so 17 is in the sequence.
		

Crossrefs

Programs

  • PARI
    { r(l,k)=if(!issquarefree(l)||!polisirreducible(z^2-l),return(0));v=bnfisintnorm(bnfinit(z^2-l), k);if(!#v,return(0));s=0;for(k=1,#v,p=v[k];a=polcoeff(p,0);b=polcoeff(p,1);f=1;for(l=k+1,#v,p=v[l];aa=polcoeff(p,0);bb=polcoeff(p,1);if(abs(a)==abs(aa)&&abs(b)==abs(bb),f=0;break));s=s+f);s
    m=0;n=0;while(1,n=n+1;res=0;for(l=1,n,rr=r(l,n);if(rr>res,res=rr));for(k=1,n-1,rr=r(n,k);if(rr>res,res=rr));if(res>m,m=res;print(n,","))) }

A374275 Smallest k such that k can be written in exactly n ways as x^2 + 3*x*y + y^2 with 0 <= x <= y.

Original entry on oeis.org

2, 0, 121, 2299, 6061, 43681, 66671, 33659659, 187891, 1266749, 8067191, 639533521, 2066801
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2024

Keywords

Comments

a(n) is the smallest nonnegative k such that A374276(k) = n.
a(14) = 36735721.
a(15) = 153276629.
a(16) = 7703531.
a(18) = 39269219.
a(20) = 250082921.
a(24) = 84738841.
a(32) = 454508329.

Crossrefs

A374276 Number of representations of n by the quadratic form x^2 + 3*x*y + y^2 with 0 <= x <= y.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2024

Keywords

Examples

			121 = 0^2 + 3*0*11 + 11^2 = 3^2 + 3*3*7 + 7^2. So a(121) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{m=Floor[Sqrt[n]]},Sum[Sum[Boole[i^2+3i*j+j^2==n],{j,i,m}],{i,0,m}]]; Array[a,122,0] (* Stefano Spezia, Jul 02 2024 *)
  • PARI
    a(n) = my(m=sqrtint(n)); sum(i=0, m, sum(j=i, m, i^2+3*i*j+j^2==n));

Formula

a(A031363(n)) > 0.
Previous Showing 21-30 of 33 results. Next