cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 218 results. Next

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]

A351292 Number of patterns of length n with all distinct run-lengths.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 57, 61, 109, 161, 1265, 1317, 2469, 3577, 5785, 43901, 47165, 86337, 127665, 204853, 284197, 2280089, 2398505, 4469373, 6543453, 10570993, 14601745, 22502549, 159506453, 171281529, 314077353, 462623821, 742191037, 1031307185, 1580543969, 2141246229
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.

Examples

			The a(1) = 1 through a(5) = 9 patterns:
  (1)  (1,1)  (1,1,1)  (1,1,1,1)  (1,1,1,1,1)
              (1,1,2)  (1,1,1,2)  (1,1,1,1,2)
              (1,2,2)  (1,2,2,2)  (1,1,1,2,2)
              (2,1,1)  (2,1,1,1)  (1,1,2,2,2)
              (2,2,1)  (2,2,2,1)  (1,2,2,2,2)
                                  (2,1,1,1,1)
                                  (2,2,1,1,1)
                                  (2,2,2,1,1)
                                  (2,2,2,2,1)
The a(6) = 57 patterns grouped by sum:
  111111  111112  111122  112221  111223  111233  112333  122333
          111211  111221  122211  111322  111332  113332  133322
          112111  122111  211122  112222  112223  122233  221333
          211111  221111  221112  211222  113222  133222  223331
                                  221113  122222  211333  333122
                                  222112  211133  222133  333221
                                  222211  221222  222331
                                  223111  222113  233311
                                  311122  222122  331222
                                  322111  222221  332221
                                          222311  333112
                                          233111  333211
                                          311222
                                          322211
                                          331112
                                          332111
		

Crossrefs

The version for runs instead of run-lengths is A351200.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns, complement A069321.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A060223 counts Lyndon patterns, necklaces A019536, aperiodic A296975.
A131689 counts patterns by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A165413 counts distinct run-lengths in binary expansion, runs A297770.
A345194 counts alternating patterns, up/down A350354.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351202 = permutations of prime factors.
- A351638 = word structures.
Row sums of A350824.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Length/@Split[#]&]],{n,0,6}]
  • PARI
    P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
    R(u,k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
    seq(n)={my(u=P(n), c=poldegree(u[#u])); concat([1], sum(k=1, c, R(u, k)*sum(r=k, c, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 11 2022

Formula

From Andrew Howroyd, Feb 12 2022: (Start)
a(n) = Sum_{k=1..n} R(n,k)*(Sum_{r=k..n} binomial(r, k)*(-1)^(r-k)), where R(n,k) = Sum_{j=1..floor((sqrt(8*n+1)-1)/2)} k*(k-1)^(j-1) * j! * A008289(n,j).
G.f.: 1 + Sum_{r>=1} Sum_{k=1..r} R(k,x) * binomial(r, k)*(-1)^(r-k), where R(k,x) = Sum_{j>=1} k*(k-1)^(j-1) * j! * [y^j](Product_{k>=1} 1 + y*x^k).
(End)

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 11 2022

A351018 Number of integer compositions of n with all distinct even-indexed parts and all distinct odd-indexed parts.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 27, 46, 77, 122, 191, 326, 497, 786, 1207, 1942, 2905, 4498, 6703, 10574, 15597, 23754, 35043, 52422, 78369, 115522, 169499, 248150, 360521, 532466, 768275, 1116126, 1606669, 2314426, 3301879, 4777078, 6772657, 9677138, 13688079, 19406214
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Comments

Also the number of binary words of length n starting with 1 and having all distinct runs (ranked by A175413, counted by A351016).

Examples

			The a(1) = 1 through a(6) = 18 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,1,2)  (4,1)    (4,2)
                     (2,1,1)  (1,1,3)  (5,1)
                              (1,2,2)  (1,1,4)
                              (2,2,1)  (1,2,3)
                              (3,1,1)  (1,3,2)
                                       (2,1,3)
                                       (2,3,1)
                                       (3,1,2)
                                       (3,2,1)
                                       (4,1,1)
                                       (1,1,2,2)
                                       (1,2,2,1)
                                       (2,1,1,2)
                                       (2,2,1,1)
		

Crossrefs

The case of partitions is A000726.
The version for run-lengths instead of runs is A032020.
These words are ranked by A175413.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A116608 counts compositions by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329738 counts compositions with equal run-lengths.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],#=={}||First[#]==1&&UnsameQ@@Split[#]&]],{n,0,10}]
  • PARI
    P(n)=prod(k=1, n, 1 + y*x^k + O(x*x^n));
    seq(n)=my(p=P(n)); Vec(sum(k=0, n, polcoef(p,k\2,y)*(k\2)!*polcoef(p,(k+1)\2,y)*((k+1)\2)!)) \\ Andrew Howroyd, Feb 11 2022

Formula

a(n>0) = A351016(n)/2.
G.f.: Sum_{k>=0} floor(k/2)! * ceiling(k/2)! * ([y^floor(k/2)] P(x,y)) * ([y^ceiling(k/2)] P(x,y)), where P(x,y) = Product_{k>=1} 1 + y*x^k. - Andrew Howroyd, Feb 11 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 11 2022

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]

A072574 Triangle T(n,k) of number of compositions (ordered partitions) of n into exactly k distinct parts, 1<=k<=n.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 0, 0, 1, 4, 0, 0, 0, 1, 4, 6, 0, 0, 0, 1, 6, 6, 0, 0, 0, 0, 1, 6, 12, 0, 0, 0, 0, 0, 1, 8, 18, 0, 0, 0, 0, 0, 0, 1, 8, 24, 24, 0, 0, 0, 0, 0, 0, 1, 10, 30, 24, 0, 0, 0, 0, 0, 0, 0, 1, 10, 42, 48, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 48, 72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 60, 120, 0
Offset: 1

Views

Author

Henry Bottomley, Jun 21 2002

Keywords

Comments

If terms in the compositions did not need to be distinct then the triangle would have values C(n-1,k-1), essentially A007318 offset.

Examples

			T(6,2)=4 since 6 can be written as 1+5=2+4=4+2=5+1.
Triangle starts (trailing zeros omitted for n>=10):
[ 1]  1;
[ 2]  1, 0;
[ 3]  1, 2, 0;
[ 4]  1, 2, 0, 0;
[ 5]  1, 4, 0, 0, 0;
[ 6]  1, 4, 6, 0, 0, 0;
[ 7]  1, 6, 6, 0, 0, 0, 0;
[ 8]  1, 6, 12, 0, 0, 0, 0, 0;
[ 9]  1, 8, 18, 0, 0, 0, 0, 0, 0;
[10]  1, 8, 24, 24, 0, 0, ...;
[11]  1, 10, 30, 24, 0, 0, ...;
[12]  1, 10, 42, 48, 0, 0, ...;
[13]  1, 12, 48, 72, 0, 0, ...;
[14]  1, 12, 60, 120, 0, 0, ...;
[15]  1, 14, 72, 144, 120, 0, 0, ...;
[16]  1, 14, 84, 216, 120, 0, 0, ...;
[17]  1, 16, 96, 264, 240, 0, 0, ...;
[18]  1, 16, 114, 360, 360, 0, 0, ...;
[19]  1, 18, 126, 432, 600, 0, 0, ...;
[20]  1, 18, 144, 552, 840, 0, 0, ...;
These rows (without the zeros) are shown in the Richmond/Knopfmacher reference.
From _Gus Wiseman_, Oct 17 2022: (Start)
Column n = 8 counts the following compositions.
  (8)  (1,7)  (1,2,5)
       (2,6)  (1,3,4)
       (3,5)  (1,4,3)
       (5,3)  (1,5,2)
       (6,2)  (2,1,5)
       (7,1)  (2,5,1)
              (3,1,4)
              (3,4,1)
              (4,1,3)
              (4,3,1)
              (5,1,2)
              (5,2,1)
(End)
		

Crossrefs

Columns (offset) include A057427 and A052928.
Row sums are A032020.
A008289 is the version for partitions (zeros removed).
A072575 counts strict compositions by maximum.
A097805 is the non-strict version, or A007318 (zeros removed).
A113704 is the constant instead of strict version.
A216652 is a condensed version (zeros removed).
A336131 counts splittings of partitions with distinct sums.
A336139 counts strict compositions of each part of a strict composition.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],Length[#]==k&]],{n,0,15},{k,1,n}] (* Gus Wiseman, Oct 17 2022 *)
  • PARI
    N=21;  q='q+O('q^N);
    gf=sum(n=0,N, n! * z^n * q^((n^2+n)/2) / prod(k=1,n, 1-q^k ) );
    /* print triangle: */
    gf -= 1; /* remove row zero */
    P=Pol(gf,'q);
    { for (n=1,N-1,
        p = Pol(polcoeff(P, n),'z);
        p += 'z^(n+1);  /* preserve trailing zeros */
        v = Vec(polrecip(p));
        v = vector(n,k,v[k]); /* trim to size n */
        print(v);
    ); }
    /* Joerg Arndt, Oct 20 2012 */

Formula

T(n, k) = T(n-k, k)+k*T(n-k, k-1) [with T(n, 0)=1 if n=0 and 0 otherwise] = A000142(k)*A060016(n, k).
G.f.: sum(n>=0, n! * z^n * q^((n^2+n)/2) / prod(k=1..n, 1-q^k ) ), rows by powers of q, columns by powers of z; includes row 0 (drop term for n=0 for this triangle, see PARI code); setting z=1 gives g.f. for A032020. [Joerg Arndt, Oct 20 2012]

A243081 Number A(n,k) of compositions of n into parts with multiplicity not larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 3, 0, 1, 1, 2, 3, 3, 0, 1, 1, 2, 4, 7, 5, 0, 1, 1, 2, 4, 7, 11, 11, 0, 1, 1, 2, 4, 8, 15, 21, 13, 0, 1, 1, 2, 4, 8, 15, 26, 34, 19, 0, 1, 1, 2, 4, 8, 16, 31, 52, 59, 27, 0, 1, 1, 2, 4, 8, 16, 31, 57, 93, 114, 57, 0, 1, 1, 2, 4, 8, 16, 32, 63, 114, 173, 178, 65, 0
Offset: 0

Views

Author

Alois P. Heinz, May 29 2014

Keywords

Comments

A(n,k) is the number of compositions of n avoiding the pattern {1}^(k+1).

Examples

			Square array A(n,k) begins:
  1,  1,  1,  1,   1,   1,   1,   1,   1, ...
  0,  1,  1,  1,   1,   1,   1,   1,   1, ...
  0,  1,  2,  2,   2,   2,   2,   2,   2, ...
  0,  3,  3,  4,   4,   4,   4,   4,   4, ...
  0,  3,  7,  7,   8,   8,   8,   8,   8, ...
  0,  5, 11, 15,  15,  16,  16,  16,  16, ...
  0, 11, 21, 26,  31,  31,  32,  32,  32, ...
  0, 13, 34, 52,  57,  63,  63,  64,  64, ...
  0, 19, 59, 93, 114, 120, 127, 127, 128, ...
		

Crossrefs

Main diagonal gives A011782.
A(2n,n) gives A232605.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,
          add(b(n-i*j, i-1, p+j, k)/j!, j=0..min(n/i, k))))
        end:
    A:= (n, k)-> `if`(k>=n, `if`(n=0, 1, 2^(n-1)), b(n$2, 0, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i<1, 0,
         Sum[b[n-i*j, i-1, p+j, k]/j!, {j, 0, Min[n/i, k]}]]];
    A[n_, k_] := If[k >= n, If[n == 0, 1, 2^(n-1)], b[n, n, 0, k]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 02 2015, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} A242447(n,i).

A294617 Number of ways to choose a set partition of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 10, 12, 17, 24, 44, 51, 76, 98, 138, 217, 272, 366, 493, 654, 848, 1284, 1560, 2115, 2718, 3610, 4550, 6024, 8230, 10296, 13354, 17144, 21926, 27903, 35556, 44644, 59959, 73456, 94109, 117735, 150078, 185800, 235719, 290818, 365334, 467923
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2017

Keywords

Comments

From Gus Wiseman, Sep 17 2024: (Start)
Also the number of strict integer compositions of n whose leaders, obtained by splitting into maximal increasing subsequences and taking the first term of each, are decreasing. For example, the strict composition (3,6,2,1,4) has maximal increasing subsequences ((3,6),(2),(1,4)), with leaders (3,2,1), so is counted under a(16). The a(0) = 1 through a(7) = 12 compositions are:
() (1) (2) (3) (4) (5) (6) (7)
(1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (3,1) (2,3) (2,4) (2,5)
(3,2) (4,2) (3,4)
(4,1) (5,1) (4,3)
(1,2,3) (5,2)
(2,1,3) (6,1)
(2,3,1) (1,2,4)
(3,1,2) (2,1,4)
(3,2,1) (2,4,1)
(4,1,2)
(4,2,1)
(End)

Examples

			The a(6) = 10 set partitions are: {{6}}, {{1},{5}}, {{5,1}}, {{2},{4}}, {{4,2}}, {{1},{2},{3}}, {{1},{3,2}}, {{2,1},{3}}, {{3,1},{2}}, {{3,2,1}}.
		

Crossrefs

Row sums of A330460 and of A330759.
This is a strict case of A374689, weak version A189076.
A011782 counts compositions, strict A032020.
A238130, A238279, A333755 count compositions by number of runs.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, combinat[bell](t), b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, min(n-i, i-1), t+1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 07 2017
  • Mathematica
    Table[Total[BellB[Length[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,25}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2, 0, If[n == 0, BellB[t], b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[n - i, i - 1], t + 1]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

A279375(n) <= a(n) <= A279790(n).
G.f.: Sum_{k>=0} Bell(k) * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020

A335514 Number of (1,2,3)-matching compositions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 14, 42, 114, 292, 714, 1686, 3871, 8696, 19178, 41667, 89386, 189739, 399144, 833290, 1728374, 3565148, 7319212, 14965880, 30496302, 61961380, 125577752, 253971555, 512716564, 1033496947, 2080572090, 4183940550, 8406047907, 16875834728
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2020

Keywords

Examples

			The a(6) = 1 through a(8) = 14 compositions:
  (1,2,3)  (1,2,4)    (1,2,5)
           (1,1,2,3)  (1,3,4)
           (1,2,1,3)  (1,1,2,4)
           (1,2,3,1)  (1,2,1,4)
                      (1,2,2,3)
                      (1,2,3,2)
                      (1,2,4,1)
                      (2,1,2,3)
                      (1,1,1,2,3)
                      (1,1,2,1,3)
                      (1,1,2,3,1)
                      (1,2,1,1,3)
                      (1,2,1,3,1)
                      (1,2,3,1,1)
		

Crossrefs

The version for permutations is A056986.
The avoiding version is A102726.
These compositions are ranked by A335479.
The version for patterns is A335515.
The version for prime indices is A335520.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Patterns matched by compositions are counted by A335456.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				

Formula

a(n > 0) = 2^(n - 1) - A102726(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A374253 Numbers k such that the k-th composition in standard order matches the patterns (1,2,1) or (2,1,2).

Original entry on oeis.org

13, 22, 25, 27, 29, 45, 46, 49, 51, 53, 54, 55, 57, 59, 61, 76, 77, 82, 86, 89, 90, 91, 93, 94, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 148, 150, 153, 155, 156, 157, 162, 165, 166, 173, 174, 177, 178
Offset: 1

Views

Author

Gus Wiseman, Jul 13 2024

Keywords

Comments

Such a composition cannot be strict.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their standard compositions begin:
  13: (1,2,1)
  22: (2,1,2)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  45: (2,1,2,1)
  46: (2,1,1,2)
  49: (1,4,1)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  76: (3,1,3)
  77: (3,1,2,1)
  82: (2,3,2)
  86: (2,2,1,2)
  89: (2,1,3,1)
		

Crossrefs

Permutations of prime indices of this type are counted by A335460.
Compositions of this type are counted by A335548.
The complement is A374249, counted by A274174.
The anti-run case is A374254.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A025047 counts wiggly compositions, ranks A345167.
A066099 lists compositions in standard order.
A124767 counts runs in standard compositions, anti-runs A333381.
A233564 ranks strict compositions, counted by A032020.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335456 counts patterns matched by compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
A335465 counts minimal patterns avoided by a standard composition.
- A335470 counts (1,2,1)-matching compositions, ranks A335466.
- A335471 counts (1,2,1)-avoiding compositions, ranks A335467.
- A335472 counts (2,1,2)-matching compositions, ranks A335468.
- A335473 counts (2,1,2)-avoiding compositions, ranks A335469.
A373948 encodes run-compression using compositions in standard order.
A373949 counts compositions by run-compressed sum, opposite A373951.
A373953 gives run-compressed sum of standard compositions, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@First/@Split[stc[#]]&]

Formula

Equals A335466 \/ A335468.

A128695 Number of compositions of n with parts in N which avoid the adjacent pattern 111.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 24, 46, 89, 170, 324, 618, 1183, 2260, 4318, 8249, 15765, 30123, 57556, 109973, 210137, 401525, 767216, 1465963, 2801115, 5352275, 10226930, 19541236, 37338699, 71345449, 136324309, 260483548, 497722578, 951030367
Offset: 0

Views

Author

Ralf Stephan, May 08 2007

Keywords

Examples

			From _Gus Wiseman_, Jul 06 2020: (Start)
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)    (3)    (4)      (5)
           (1,1)  (1,2)  (1,3)    (1,4)
                  (2,1)  (2,2)    (2,3)
                         (3,1)    (3,2)
                         (1,1,2)  (4,1)
                         (1,2,1)  (1,1,3)
                         (2,1,1)  (1,2,2)
                                  (1,3,1)
                                  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,2,1)
                                  (1,2,1,1)
(End)
		

Crossrefs

Column k=0 of A232435.
The matching version is A335464.
Contiguously (1,1)-avoiding compositions is A003242.
Contiguously (1,1)-matching compositions are A261983.
Compositions with some part > 2 are A008466
Compositions by number of adjacent equal parts are A106356.
Compositions where each part is adjacent to an equal part are A114901.
Compositions with adjacent parts coprime are A167606.
Compositions with equal parts contiguous are A274174.
Patterns contiguously matched by compositions are A335457.
Patterns contiguously matched by a given partition are A335516.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(abs(t)<>j,
           b(n-j, j), `if`(t=-j, 0, b(n-j, -j))), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Nov 23 2013
  • Mathematica
    nn=33;CoefficientList[Series[1/(1-Sum[(x^i+x^(2i))/(1+x^i+x^(2i)),{i,1,nn}]),{x,0,nn}],x] (* Geoffrey Critzer, Nov 23 2013 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,x_,x_,_}]&]],{n,13}] (* Gus Wiseman, Jul 06 2020 *)

Formula

G.f.: 1/(1-Sum(i>=1, x^i*(1+x^i)/(1+x^i*(1+x^i)) ) ).
a(n) ~ c * d^n, where d is the root of the equation Sum_{k>=1} 1/(d^k + 1/(1 + d^k)) = 1, d=1.9107639262818041675000243699745706859615884029961947632387839..., c=0.4993008137128378086219448701860326113802027003939127932922782... - Vaclav Kotesovec, May 01 2014, updated Jul 07 2020
For n>=2, a(n) = A091616(n) + A003242(n). - Vaclav Kotesovec, Jul 07 2020
Previous Showing 41-50 of 218 results. Next