cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A370765 a(n) = 9^n * [x^n] Product_{k>=1} ((1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k))^(1/3).

Original entry on oeis.org

1, 15, 153, 11295, 31968, 5289300, 41957514, 3216919050, -21009764691, 2153132775315, -16978376482767, 1659596014366335, -35929151338082922, 1473739361689662990, -38968782475183427016, 1541715187631618436300, -46858796372722560413526, 1615119529247884664988030
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*x^k)*(1+2^(k-1)*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
    nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*(9*x)^k)*(1+2^(k-1)*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, 2*x]*QPochhammer[-1/2, 2*x]/9)^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
    nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, x]*QPochhammer[-1/2, x]/9)^(1/3), {x, 0, nmax}], x] * 18^Range[0, nmax]

Formula

G.f.: Product_{k>=1} ((1 + 2^(k+1)*(9*x)^k) * (1 + 2^(k-1)*(9*x)^k))^(1/3).
a(n) ~ (-1)^(n+1) * c * 36^n / n^(4/3), where c = 0.244280405759762854740979712556383125782589356973734984...

A376944 G.f.: Sum_{k>=0} 2^k * x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 12, 8, 8, 16, 24, 24, 24, 32, 32, 64, 64, 64, 80, 80, 112, 160, 160, 160, 224, 224, 256, 320, 416, 416, 480, 576, 576, 704, 768, 896, 1152, 1216, 1280, 1536, 1600, 1856, 2112, 2304, 2560, 3200, 3456, 3584, 4224, 4480, 5120, 5760, 6144, 6656, 7808, 9088
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[2^k * x^(k*(k+1)/2) * Product[1+x^j, {j, 1, k}], {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 60; p = 1; s = 1; Do[p = Normal[Series[2*p*(1 + x^k) * x^k, {x, 0, nmax}]]; s += p; , {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

a(n) ~ sqrt(1 + sqrt(3)) * exp(sqrt((2*log(2)^2 + 2*log(1 - sqrt(3)/2) * log(sqrt(3) - 1) + 4*polylog(2, sqrt(3) - 1) - Pi^2/3)*n)) / (4*3^(1/4)*sqrt(n)).

A376947 G.f.: Sum_{k>=0} 2^k * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j).

Original entry on oeis.org

1, 0, 2, 2, 2, 2, 6, 6, 10, 10, 14, 14, 26, 26, 38, 46, 58, 66, 86, 94, 130, 146, 182, 214, 274, 306, 382, 438, 530, 602, 750, 838, 1018, 1162, 1390, 1598, 1898, 2154, 2550, 2910, 3402, 3858, 4550, 5134, 5970, 6786, 7846, 8902, 10306, 11618, 13390, 15142, 17346, 19562, 22398
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Comments

In general, if d >= 1, b > 0 and g.f. = Sum_{k>=0} d^k * x^(b*k^2 + c*k) / Product_{j=1..k} (1 - x^j), then a(n) ~ r^c * (b*log(r)^2 + polylog(2, 1-r))^(1/4) * exp(2*sqrt((b*log(r)^2 + polylog(2, 1-r))*n)) / (2*sqrt((2*b*(1-r) + r)*Pi) * n^(3/4)), where r is the smallest positive real root of the equation d*r^(2*b) + r = 1.

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[2^k*x^(k*(k+1)) / Product[1-x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ (Pi^2/6 + log(2)^2)^(1/4) * exp(sqrt((Pi^2/3 + 2*log(2)^2)*n)) / (2^(7/4) * sqrt(3*Pi) * n^(3/4)).

A376948 G.f.: Sum_{k>=0} 2^k * x^(k^2) / Product_{j=1..k} (1 - x^j).

Original entry on oeis.org

1, 2, 2, 2, 6, 6, 10, 10, 14, 22, 26, 34, 46, 54, 66, 82, 110, 126, 162, 194, 246, 286, 354, 410, 502, 606, 714, 842, 1014, 1190, 1418, 1658, 1950, 2278, 2666, 3090, 3646, 4198, 4882, 5634, 6558, 7534, 8754, 10002, 11558, 13230, 15218, 17322, 19910, 22702, 25914, 29466, 33606
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[2^k*x^(k^2) / Product[1-x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ (Pi^2/6 + log(2)^2)^(1/4) * exp(sqrt((Pi^2/3 + 2*log(2)^2)*n)) / (2^(3/4) * sqrt(3*Pi) * n^(3/4)).

A266576 Decimal expansion of Pi^2/12 + log(2)^2 + Sum_{j>=1} 1 / (j^2 * 2^(2*j+1)).

Original entry on oeis.org

1, 4, 3, 6, 7, 4, 6, 3, 6, 6, 8, 8, 3, 6, 8, 0, 9, 4, 6, 3, 6, 2, 9, 0, 2, 0, 2, 3, 8, 9, 3, 5, 8, 3, 3, 5, 4, 2, 4, 9, 9, 5, 6, 4, 3, 5, 6, 5, 4, 8, 7, 2, 1, 0, 2, 6, 6, 7, 2, 4, 3, 9, 2, 4, 8, 6, 5, 0, 1, 5, 7, 8, 9, 2, 7, 7, 3, 9, 7, 7, 9, 7, 5, 4, 3, 7, 3, 7, 8, 6, 7, 1, 5, 5, 0, 6, 8, 8, 9, 0, 1, 0, 1, 3, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

A constant related to the asymptotics of A032302.

Examples

			1.436746366883680946362902023893583354249956435654872102667243924865...
		

Crossrefs

Cf. A032302.

Programs

  • Maple
    evalf(Pi^2/6 + log(2)^2/2 + polylog(2, -1/2), 120);
    Digits :=100 ; evalf(dilog(3)) ; # R. J. Mathar, Jan 07 2021
  • Mathematica
    RealDigits[Pi^2/12 + Log[2]^2 + PolyLog[2, 1/4]/2,10,120][[1]]
    RealDigits[-PolyLog[2, -2], 10, 120][[1]] (* Vaclav Kotesovec, Jul 29 2019 *)
  • PARI
    Pi^2/6 + log(2)^2/2 + polylog(2, -1/2) \\ Michel Marcus, Jan 04 2016
    
  • PARI
    -dilog(-2) \\ Charles R Greathouse IV, Sep 08 2025

Formula

Equals Pi^2/12 + log(2)^2 + Sum_{j>=1} 1 / (j^2 * 2^(2*j+1)).
Equals Pi^2/6 + log(2)^2/2 + polylog(2, -1/2).
Equals Pi^2/12 + log(2)^2 + polylog(2, 1/4)/2.
Equals -polylog(2, -2). - Vaclav Kotesovec, Jul 29 2019

A316398 Number of distinct subset-averages of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 5, 2, 4, 4, 2, 2, 5, 2, 5, 4, 4, 2, 6, 2, 4, 2, 5, 2, 6, 2, 2, 4, 4, 4, 6, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 7, 2, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 9, 2, 4, 5, 2, 4, 8, 2, 5, 4, 8, 2, 8, 2, 4, 5, 5, 4, 8, 2, 7, 2, 4, 2, 9, 4, 4, 4, 6, 2, 8, 4, 5, 4, 4, 4, 8, 2, 5, 5, 6, 2, 8, 2, 6, 6
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2018

Keywords

Comments

Although the average of an empty set is technically indeterminate, we consider it to be distinct from the other subset-averages.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(60) = 9 distinct subset-averages of (3,2,1,1) are 0/0, 1, 4/3, 3/2, 5/3, 7/4, 2, 5/2, 3.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Mean/@Subsets[primeMS[n]]]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A316398(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s = A056239(d)/bigomega(d)), mapput(m,s,s); k++)); (1+k); }; \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A316314(n) + 1.

Extensions

More terms from Antti Karttunen, Sep 23 2018

A366132 Number of unordered pairs of distinct strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 6, 10, 15, 28, 45, 66, 105, 153, 231, 351, 496, 703, 1035, 1431, 2016, 2850, 3916, 5356, 7381, 10011, 13530, 18336, 24531, 32640, 43660, 57630, 75855, 100128, 130816, 170820, 222778, 288420, 372816, 481671, 618828, 793170, 1016025, 1295245
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2023

Keywords

Examples

			The a(3) = 1 through a(8) = 15 pairs of strict partitions:
  {3,21}  {4,31}  {5,32}   {6,42}    {7,43}    {8,53}
                  {5,41}   {6,51}    {7,52}    {8,62}
                  {41,32}  {51,42}   {7,61}    {8,71}
                           {6,321}   {52,43}   {62,53}
                           {42,321}  {61,43}   {71,53}
                           {51,321}  {61,52}   {71,62}
                                     {7,421}   {8,431}
                                     {43,421}  {8,521}
                                     {52,421}  {53,431}
                                     {61,421}  {53,521}
                                               {62,431}
                                               {62,521}
                                               {71,431}
                                               {71,521}
                                               {521,431}
		

Crossrefs

For subsets instead of partitions we have A006516, non-disjoint A003462.
The disjoint case is A108796, non-strict A260669.
For non-strict partitions we have A355389.
The ordered disjoint case is A365662, non-strict A054440.
The ordered version is 2*a(n).
Including equal pairs or twins gives A366317, ordered A304990.
A000041 counts integer partitions, strict A000009.
A002219 and A237258 count partitions of 2n including a partition of n.
A161680 and A000217 count 2-subsets of {1..n}.

Programs

  • Mathematica
    Table[Length[Subsets[Select[IntegerPartitions[n],UnsameQ@@#&],{2}]],{n,0,30}]

Formula

a(n) = binomial(A000009(n),2).

A366317 Number of unordered pairs of strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 15, 21, 36, 55, 78, 120, 171, 253, 378, 528, 741, 1081, 1485, 2080, 2926, 4005, 5460, 7503, 10153, 13695, 18528, 24753, 32896, 43956, 57970, 76245, 100576, 131328, 171405, 223446, 289180, 373680, 482653, 619941, 794430, 1017451, 1296855
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2023

Keywords

Examples

			The a(1) = 1 through a(7) = 15 unordered pairs of strict partitions:
  {1,1}  {2,2}  {3,3}    {4,4}    {5,5}    {6,6}      {7,7}
                {3,21}   {4,31}   {5,32}   {6,42}     {7,43}
                {21,21}  {31,31}  {5,41}   {6,51}     {7,52}
                                  {32,32}  {42,42}    {7,61}
                                  {32,41}  {42,51}    {43,43}
                                  {41,41}  {51,51}    {43,52}
                                           {6,321}    {43,61}
                                           {42,321}   {52,52}
                                           {51,321}   {52,61}
                                           {321,321}  {61,61}
                                                      {7,421}
                                                      {43,421}
                                                      {52,421}
                                                      {61,421}
                                                      {421,421}
		

Crossrefs

For non-strict partitions we have A086737.
The disjoint case is A108796, non-strict A260669.
The ordered version is A304990, disjoint A032302.
The ordered disjoint case is A365662.
Excluding constant pairs gives A366132.
A000041 counts integer partitions, strict A000009.
A002219 and A237258 count partitions of 2n including a partition of n.
A364272 counts sum-full strict partitions, sum-free A364349.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2],OrderedQ]],{n,0,30}]

Formula

a(n) = A000217(A000009(n)).
Composition of A000009 and A000217.

A370737 a(n) = 5^(2*n) * [x^n] Product_{k>=1} (1 + 2*x^k)^(1/5).

Original entry on oeis.org

1, 10, 50, 14750, -166250, 14011250, -133418750, 18136968750, -620089531250, 29520532031250, -917207280468750, 51260806902343750, -2257145499863281250, 101035630688769531250, -4434459153208496093750, 214279556679692871093750, -9859289197933918457031250, 454976266920750451660156250
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2024

Keywords

Crossrefs

Cf. A032302 (m=1), A370709 (m=2), A370716 (m=3), A370736 (m=4).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1+2*x^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[1+2*(25*x)^k, {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + 2*(25*x)^k)^(1/5).
a(n) ~ (-1)^(n+1) * QPochhammer(-1/2)^(1/5) * 50^n / (5 * Gamma(4/5) * n^(6/5)).

A370749 a(n) = 2^n * [x^n] Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^(1/4).

Original entry on oeis.org

1, 2, 6, 28, 70, 300, 892, 3544, 9990, 43340, 127988, 546120, 1651356, 7227896, 22414008, 99344944, 312879302, 1396285452, 4486205892, 20057934312, 65293087284, 292353604136, 963327294536, 4308913730256, 14340603113372, 64059675491512, 215075154021384, 958968160741328
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - 2*x^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 2^Range[0, nmax]
    nmax = 30; CoefficientList[Series[Product[(1 + 2*(2*x)^k)/(1 - 2*(2*x)^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + 2*(2*x)^k)/(1 - 2*(2*x)^k))^(1/4).
a(n) ~ QPochhammer(-1, 1/2)^(1/4) * 4^n / (Gamma(1/4) * QPochhammer(1/2)^(1/4) * n^(3/4)).
Previous Showing 31-40 of 46 results. Next