cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A033153 Incrementally largest terms in the continued fraction for Niven's constant.

Original entry on oeis.org

1, 2, 4, 8, 11, 14, 29, 372, 559, 1671
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

One more term from Michel ten Voorde, Jun 14 2003

A188385 Highest exponent in the prime factorization of n^n.

Original entry on oeis.org

0, 2, 3, 8, 5, 6, 7, 24, 18, 10, 11, 24, 13, 14, 15, 64, 17, 36, 19, 40, 21, 22, 23, 72, 50, 26, 81, 56, 29, 30, 31, 160, 33, 34, 35, 72, 37, 38, 39, 120, 41, 42, 43, 88, 90, 46, 47, 192, 98, 100, 51, 104, 53, 162, 55, 168, 57, 58, 59, 120, 61, 62, 126, 384
Offset: 1

Views

Author

A. Timothy Royappa, Mar 29 2011

Keywords

Examples

			For n = 1, 1^1 = 1, giving a(1) = 0.
For n = 12, 12^12 = 8916100448256 = (2^24)(3^12), giving a(12) = 24.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[n*Max[Last /@ FactorInteger[n]], {n, 2, 100}]] (* T. D. Noe, Mar 30 2011 *)
  • PARI
    a(n) = if (n==1, 0, n*vecmax(factor(n)[,2])); \\ Michel Marcus, Dec 08 2020

Formula

a(n) = n * A051903(n). - Franklin T. Adams-Watters, Mar 29 2011
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A033150 = 1.705211... . - Amiram Eldar, Jan 05 2024

A242977 Decimal expansion of Sum_{k>1} 1/(k*(k-1)*zeta(k)), a constant related to Niven's constant.

Original entry on oeis.org

7, 6, 6, 9, 4, 4, 4, 9, 0, 5, 2, 1, 0, 8, 8, 2, 4, 1, 6, 5, 2, 4, 1, 7, 9, 2, 3, 0, 0, 3, 1, 7, 6, 9, 3, 0, 9, 7, 4, 7, 5, 7, 8, 8, 9, 9, 3, 1, 9, 0, 5, 1, 6, 9, 6, 5, 4, 1, 2, 2, 0, 8, 1, 6, 0, 7, 8, 9, 6, 8, 4, 2, 3, 7, 5, 6, 7, 9, 5, 7, 7, 5, 7, 8, 9, 3, 7, 4, 6, 2, 9, 8, 4, 0, 9, 9, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, May 28 2014

Keywords

Comments

The asymptotic mean of the reciprocals of the maximal exponent in prime factorization of the positive integers. - Amiram Eldar, Dec 15 2022

Examples

			0.766944490521088241652417923...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.

Crossrefs

Programs

  • Mathematica
    digits = 98; m0 = 100; dm = 100; Clear[f]; f[m_] := f[m] = NSum[1/(k*(k - 1)*Zeta[k]), {k, 2, m}, WorkingPrecision -> digits + 10, NSumTerms -> m] + 1/m; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], Print["m = ", m ]; m = m + dm]; RealDigits[f[m], 10, digits] // First
  • PARI
    sumpos(k = 2, 1/(k*(k-1)*zeta(k))) \\ Amiram Eldar, Dec 15 2022

Formula

Equals lim_{n->oo} (1/n) * Sum_{k=2..n} 1/A051903(k). - Amiram Eldar, Oct 16 2020
Equals 1 + Sum_{k>=2} (1/zeta(k)-1)/(k*(k-1)). - Amiram Eldar, Dec 15 2022

A370494 Oblong numbers of the form (k-1)*k where k is the product of an odd number of distinct primes.

Original entry on oeis.org

2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 870, 930, 1332, 1640, 1722, 1806, 2162, 2756, 3422, 3660, 4290, 4422, 4830, 4970, 5256, 6006, 6162, 6806, 7832, 9312, 10100, 10302, 10506, 10920, 11342, 11772, 11990, 12656, 12882, 16002, 16770, 17030, 18632, 18906, 19182
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2024

Keywords

Crossrefs

Complement of A370495 within A368249.

Programs

  • Mathematica
    Table[n*(n - 1), {n, Select[Range[150], MoebiusMu[#] == -1 &]}]
  • PARI
    lista(kmax) = forsquarefree(k=1, kmax, if(moebius(k) == -1, print1(k[1]*(k[1]-1), ", ")));
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A370494(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-primepi(x)-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(3,x.bit_length(),2)))
        return (k:=bisection(f,n,n))*(k-1) # Chai Wah Wu, Jan 28 2025

Formula

a(n) = A002378(A030059(n)-1).
Sum_{n>=1} 1/a(n) = (A368250 + A033150 - 1)/2 = 0.776922504035... .

A370495 Oblong numbers of the form (k-1)*k where k is the product of an even number of distinct primes.

Original entry on oeis.org

0, 30, 90, 182, 210, 420, 462, 650, 1056, 1122, 1190, 1406, 1482, 2070, 2550, 2970, 3192, 3306, 3782, 4160, 4692, 5402, 5852, 6642, 7140, 7310, 7482, 8190, 8556, 8742, 8930, 11130, 12210, 13110, 13806, 14042, 14762, 15006, 16512, 17556, 17822, 19740, 20022, 20306
Offset: 1

Views

Author

Amiram Eldar, Feb 20 2024

Keywords

Crossrefs

Complement of A370494 within A368249.

Programs

  • Mathematica
    Table[n*(n - 1), {n, Select[Range[150], MoebiusMu[#] == 1 &]}]
  • PARI
    lista(kmax) = forsquarefree(k=1, kmax, if(moebius(k) == 1, print1(k[1]*(k[1]-1), ", ")));
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A370495(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,x.bit_length(),2)))
        return (k:=bisection(f,n,n))*(k-1) # Chai Wah Wu, Jan 28 2025

Formula

a(n) = A002378(A030229(n)-1).
Sum_{n>=2} 1/a(n) = (A368250 - A033150 + 1)/2 = 0.071711363929... .

A375040 The maximum exponent in the prime factorization of 2*n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 2, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 2, 2, 3, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 5, 2, 2, 1, 3, 1, 3, 1, 4, 1, 2, 1, 3, 1, 2, 2, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 2, 1, 5, 4, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 2, 3, 1, 2, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2024

Keywords

Crossrefs

Bisection of A051903.

Programs

  • Mathematica
    a[n_] := Max[FactorInteger[2*n][[;; , 2]]]; Array[a, 100]
  • PARI
    a(n) = vecmax(factor(2*n)[,2]);

Formula

a(n) = A051903(2*n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=2} (1 - (2^k-2)/((2^k-1)*zeta(k))) = 2.15062559388175538361... .

A382475 Numbers k where record values occur for A129132(k)/k = A380264(k)/A380265(k), the mean value of the maximum exponent in the prime factorization of the numbers {1, 2, ..., k}.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 16, 18, 20, 24, 25, 27, 28, 32, 56, 64, 81, 128, 162, 176, 192, 256, 352, 384, 736, 768, 896, 1026, 1029, 1056, 1280, 1792, 1863, 1864, 1928, 2052, 2058, 2064, 2080, 2304, 2432, 2560, 2944, 3776, 4376, 4384, 4480, 4482, 5104, 5120, 5121, 5125
Offset: 1

Views

Author

Amiram Eldar, Mar 28 2025

Keywords

Comments

First differs from A382476 at n = 72: a(72) = 39936 while A382476(72) = 39937.
Niven (1969) proved that abs(A129132(k)/k - c) < f(k) = (3/k) * Sum_{i=2 .. floor(log_2(k))} k^(1/i), where c = A033150 is Niven's constant. For k = 81984 we have A129132(k)/k - c = 2.40277...*10^(-5). There are no other terms in this sequence that are larger than 81984 up to 16500000000, and for k = 16500000000 we have abs(A129132(k)/k - c) < f(k) = 2.39403...*10^(-5). Therefore, this sequence is finite and a(73) = 81984 is the last term of this sequence.

Crossrefs

Programs

  • Mathematica
    f[k_] := Max[FactorInteger[k][[;; , 2]]]; f[1] = 0; seq[lim_] := Module[{v = {}, s = 0, rm = -1, r}, Do[s += f[k]; r = s/k; If[r > rm, rm = r; AppendTo[v, k]], {k, 1, lim}]; v]; seq[10^5]
  • PARI
    f(k) = if(k == 1, 0, vecmax(factor(k)[, 2]));
    list(lim) = {my(v = List(), s = 0, rm = -1, r); for(k = 1, lim, s += f(k); r = s/k; if(r > rm, rm = r; listput(v, k))); Vec(v);}

A033154 Position of incrementally largest terms in continued fraction for Niven's constant.

Original entry on oeis.org

0, 2, 6, 12, 19, 34, 50, 67, 95, 461
Offset: 1

Views

Author

Keywords

Comments

The continued fraction expansion is indexed [a_0; a_1, a_2, a_3, ...];

Crossrefs

Formula

A033151(a(n)) = A033153(n). - Andrew Howroyd, Sep 11 2024

Extensions

One more term from Michel ten Voorde, Jun 14 2003
Terms decreased by 1 for consistency with offset change in A033151 by Andrew Howroyd, Sep 11 2024

A249141 Decimal expansion of 'sigma', a constant associated with the expected number of random elements to generate a finite abelian group.

Original entry on oeis.org

2, 1, 1, 8, 4, 5, 6, 5, 6, 3, 4, 7, 0, 1, 6, 3, 5, 3, 2, 3, 8, 2, 5, 2, 7, 7, 6, 9, 1, 0, 2, 3, 6, 4, 7, 6, 4, 2, 8, 8, 5, 9, 0, 7, 8, 5, 6, 1, 8, 5, 1, 7, 9, 1, 5, 4, 1, 4, 2, 6, 3, 8, 5, 2, 9, 0, 9, 8, 3, 4, 1, 1, 2, 3, 6, 5, 3, 4, 6, 3, 4, 5, 7, 7, 5, 5, 7, 0, 8, 2, 5, 9, 7, 8, 1, 8, 7, 6, 7, 9, 3, 9
Offset: 1

Views

Author

Jean-François Alcover, Oct 22 2014

Keywords

Examples

			2.11845656347016353238252776910236476428859...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.

Crossrefs

Programs

  • Mathematica
    digits = 102; jmax = 400; P[j_] := 1/Product[N[Zeta[k], digits+100], {k, j, jmax}]; sigma = 1+Sum[1 - P[j], {j, 2, jmax}]; RealDigits[sigma, 10, digits] // First
  • PARI
    default(realprecision,120); 1 + suminf(j=2, 1 - prodinf(k=j, 1/zeta(k))) \\ Michel Marcus, Oct 22 2014

Formula

sigma = 1+sum_{j >= 2} (1-prod_{k >= j} zeta(k)^(-1)).

A272531 Decimal expansion of C_2 (so named by S. Finch), a constant which is an analog of Niven's constant when mean of exponents is considered instead of maximum.

Original entry on oeis.org

1, 1, 8, 7, 3, 0, 9, 3, 4, 9, 5, 7, 6, 4, 0, 8, 4, 3, 0, 1, 7, 6, 6, 6, 8, 8, 4, 1, 1, 5, 5, 3, 3, 8, 6, 2, 3, 1, 2, 5, 7, 8, 6, 6, 6, 9, 9, 6, 2, 5, 4, 8, 8, 7, 8, 3, 9, 5, 9, 6, 0, 8, 7, 8, 7, 8, 9, 3, 3, 9, 3, 1, 2, 6, 6, 5, 9, 0, 2, 9, 0, 1, 1, 6, 2, 5, 1, 7, 7, 7, 9, 0, 3, 2, 3, 6, 9, 8, 6, 8
Offset: 0

Views

Author

Jean-François Alcover, May 02 2016

Keywords

Examples

			0.1187309349576408430176668841155338623125786669962548878395960878789...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens constants (pp. 94-95) and Section 2.6 Niven's constant p.112.

Crossrefs

Programs

  • Mathematica
    digits = 100;
    C1 = NSum[PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits] ;
    M = EulerGamma - NSum[PrimeZetaP[n]/n, {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits] ;
    N0 = PrimeZetaP[2];
    C2 = C1 (1 - M) - N0;
    RealDigits[C2, 10, digits][[1]]

Formula

C_2 = C_1 (1 - M) - N, using Finch's notation, where C_1 is A136141, M A077761 and N A085548.
Previous Showing 21-30 of 35 results. Next