A180260
Number of not necessarily connected 8-regular simple graphs on n vertices.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105935, 423187422492342, 281341168330848874, 214755319657939505396, 187549729101764460261505, 186685399408147545744203915, 210977245260028917322933165888
Offset: 0
The a(0)=1 graph is K_0 (vacuously 8-regular).
The a(9)=1 graph is K_9.
8-regular simple graphs:
A014378 (connected),
A165878 (disconnected), this sequence (not necessarily connected).
Not necessarily connected regular simple graphs:
A005176 (any degree),
A051031 (triangular array), specified degree k:
A000012 (k=0),
A000012 (k=1),
A008483 (k=2),
A005638 (k=3),
A033301 (k=4),
A165626 (k=5),
A165627 (k=6),
A165628 (k=7), this sequence (k=8).
8-regular not necessarily connected graphs: this sequence (simple graphs),
A129437 (multigraphs with loops allowed),
A129426 (multigraphs with loops forbidden).
A005816
Number of 4-valent labeled graphs with n nodes where multiple edges and loops are allowed.
Original entry on oeis.org
1, 1, 3, 15, 138, 2021, 43581, 1295493, 50752145, 2533755933, 157055247261, 11836611005031, 1066129321651668, 113117849882149725, 13965580274228976213, 1985189312618723797371, 321932406123733248625851, 59079829666712346141491403, 12182062872168618012045410805
Offset: 0
- Goulden, I. P.; Jackson, D. M.; Reilly, J. W.; The Hammond series of a symmetric function and its application to P-recursiveness. SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 179-193.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Definition corrected by appending "where multiple edges and loops are allowed", reference to Read 1959, formula from Read 1959 (5.11), and new terms a(16), a(17), a(18) contributed by
Jason Kimberley, Jan 22 2010
A184326
The number of disconnected k-regular simple graphs on 2k+6 vertices.
Original entry on oeis.org
1, 1, 4, 9, 25, 66, 297, 1562, 10901, 88238, 806174, 8037887, 86228020, 985884104, 11946634677, 152808994328, 2056701656260
Offset: 0
The a(0)=1 graph is 6K_1. The a(1)=1 graph is 4K_2. The a(2)=4 graphs are 2C_3+C_4, 2C_5, C_4+C_6, and C_3+C_7.
This sequence is the fifth highest diagonal of D=
A068933: that is a(n)=D(2k+6, k).
A185140
Irregular triangle E(n,g) counting not necessarily connected 4-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 2, 5, 1, 16, 0, 58, 2, 264, 2, 1535, 12, 10755, 31, 87973, 220, 803973, 1606, 8020967, 16829, 86029760, 193900, 983431053, 2452820, 11913921910, 32670331, 1, 152352965278, 456028487, 2, 2050065073002, 6636066126, 8, 28466234288520, 100135577863, 131, 8020967, 16829
Offset: 5
05: 1;
06: 1;
07: 2;
08: 5, 1;
09: 16, 0;
10: 58, 2;
11: 264, 2;
12: 1535, 12;
13: 10755, 31;
14: 87973, 220;
15: 803973, 1606;
16: 8020967, 16829;
17: 86029760, 193900;
18: 983431053, 2452820;
19: 11913921910, 32670331, 1;
20: 152352965278, 456028487, 2;
21: 2050065073002, 6636066126, 8;
22: 28466234288520, 100135577863, 131;
A033700
Number of connected transitive 4-valent (or quartic) graphs with n nodes.
Original entry on oeis.org
1, 1, 1, 3, 3, 3, 2, 10, 3, 5, 7, 13, 4
Offset: 5
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 5, 11, 27, 86, 351, 1895, 12673, 100841, 906332, 8943750, 95165384, 1081035906, 13027523553, 165835586734, 2222527601208, 31273800434817, 460941981112256, 7101107185967292, 114127691657536897, 1910229280483131905, 33244227211086415436
Offset: 0
A385629
Number of equivalence classes of connected 4-regular graphs on n unlabeled nodes up to local complementation.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 2, 6, 13, 56, 261
Offset: 1
There are only two 4-regular graphs with 7 nodes and they are not equivalent up to a sequence of local complementation, thus a(7) = 2.
Comments