A213503
Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 6, 2, 20, 11, 3, 50, 34, 16, 4, 105, 80, 48, 21, 5, 196, 160, 110, 62, 26, 6, 336, 287, 215, 140, 76, 31, 7, 540, 476, 378, 270, 170, 90, 36, 8, 825, 744, 616, 469, 325, 200, 104, 41, 9, 1210, 1110, 948, 756, 560, 380, 230, 118, 46, 10
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....6....20....50....105....196...336
2....11...34....80....160....287...476
3....16...48....110...215....378...616
4....21...62....140...270....469...756
5....26...76....170...325....560...896
...
T(5,1) = (1)**(5) = 5
T(5,2) = (1,4)**(5,6) = 1*6+4*5 = 26
T(5,3) = (1,4,9)**(5,6,7) = 1*7+4*6+9*5 = 76
-
Flat(List([1..12], n-> List([1..n], k-> (n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12))); # G. C. Greubel, Jul 05 2019
-
[[(n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12: k in [1..n]]: n in [1..12]]; // G. C. Greubel, Jul 05 2019
-
(* First program *)
b[n_]:= n^2; c[n_]:= n;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]] (* A213503 *)
r[n_]:= Table[T[n, k], {k,40}] (* columns of antidiagonal triangle *)
d = Table[T[n, n], {n, 1, 40}] (* A117066 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A033455 *)
(* Second program *)
Table[(n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 05 2019 *)
-
t(n,k) = (n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12;
for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 05 2019
-
[[(n-k+1)*((n-k+1)^3 + 4*(n-k+1)^2*k + 6*k*(n-k+1) - n + 3*k - 1)/12 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 05 2019
A247645
Triangle read by rows: T(j,0)=1, T(0,j) = [j=0], T(-1,j)=T(-2,j)=0, T(j,k)=2T(j-1,k)-T(j-2,k)+T(j-1,k-2)+T(j-2,k-2).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 9, 5, 7, 1, 1, 1, 4, 16, 14, 26, 8, 10, 1, 1, 1, 5, 25, 30, 70, 34, 52, 11, 13, 1, 1, 1, 6, 36, 55, 155, 104, 190, 63, 87, 14, 16, 1, 1, 1, 7, 49, 91, 301, 259, 553, 253, 403, 101, 131, 17, 19, 1, 1, 1, 8, 64, 140, 532, 560
Offset: 0
Triangle begins:
1,
1,1,1,
1,2,4,1,1,
1,3,9,5,7,1,1,
1,4,16,14,26,8,10,1,1,
1,5,25,30,70,34,52,11,13,1,1,
1,6,36,55,155,104,190,63,87,14,16,1,1
1,7,49,91,301,259,553,253,403,101,131,17,19,1,1
1,8,64,140,532,560,1372,806,1462,504,736,148,184,20,22,1,1
...
-
T[, 0] = 1; T[j, k_] /; 0 <= k <= 2j := T[j, k] = Which[k<0 || k>2j, 0, k == 2j || k == 2j-1, 1, OddQ[k], T[j-1, k] + T[j-1, k-1], EvenQ[k], T[j-1, k-2] + 2 T[j-1, k-1] + T[j-1, k]];
Table[T[j, k], {j, 0, 8}, {k, 0, 2j}] // Flatten (* Jean-François Alcover, Oct 09 2018 *)
A271663
Convolution of nonzero squares (A000290) with nonzero pentagonal numbers (A000326).
Original entry on oeis.org
1, 9, 41, 131, 336, 742, 1470, 2682, 4587, 7447, 11583, 17381, 25298, 35868, 49708, 67524, 90117, 118389, 153349, 196119, 247940, 310178, 384330, 472030, 575055, 695331, 834939, 996121, 1181286, 1393016, 1634072, 1907400, 2216137, 2563617, 2953377, 3389163, 3874936
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Figurate numbers
- Eric Weisstein's World of Mathematics, Square Number
- Eric Weisstein's World of Mathematics, Pentagonal Number
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1)
Cf.
A005585: convolution of nonzero squares with nonzero triangular numbers.
Cf.
A033455: convolution of nonzero squares with themselves.
Cf.
A051836 (after 0): convolution of nonzero triangular numbers with nonzero pentagonal numbers.
-
/* From definition: */ P:=func; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,4)*P(i,5): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 12 2016
-
[(n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120: n in [0..40]]; // Bruno Berselli, Apr 12 2016
-
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 9, 41, 131, 336, 742}, 40]
Table[(n + 1) (n + 2) (n + 3) (6 n^2 + 19 n + 20)/120, {n, 0, 40}]
With[{nmax = 50}, CoefficientList[Series[(120 + 960*x + 1440*x^2 + 680*x^3 + 115*x^4 + 6*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 07 2017 *)
-
vector(40, n, n--; (n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120) \\ Altug Alkan, Apr 12 2016
A306548
Triangle T(n,k) read by rows, where the k-th column is the shifted self-convolution of the power function n^k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 10, 8, 1, 0, 0, 5, 20, 34, 16, 1, 0, 0, 6, 35, 104, 118, 32, 1, 0, 0, 7, 56, 259, 560, 418, 64, 1, 0, 0, 8, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0, 9, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0, 0, 10, 165, 1968, 14988, 64064, 130835, 101504, 20758, 512, 1, 0, 0
Offset: 0
==================================================================
k= 0 1 2 3 4 5 6 7 8 9 10
==================================================================
n=0: 2;
n=1: 2, 0;
n=2: 3, 0, 0;
n=3: 4, 1, 0, 0;
n=4: 5, 4, 1, 0, 0;
n=5: 6, 10, 8, 1, 0, 0;
n=6: 7, 20, 34, 16, 1, 0, 0;
n=7: 8, 35, 104, 118, 32, 1, 0, 0;
n=8: 9, 56, 259, 560, 418, 64, 1, 0, 0;
n=9: 10, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0;
n=10: 11, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0; 0;
...
-
f[m_, s_] := Piecewise[{{s^m, s >= 0}, {0, True}}];
F[n_, m_] := Sum[f[m, n - k]*f[m, k], {k, -Infinity, +Infinity}];
T[n_, k_] := F[n - k, k];
Column[Table[T[n, k], {n, 0, 12}, {k, 0, n}], Left]
A339355
Maximum number of copies of a 12345 permutation pattern in an alternating (or zig-zag) permutation of length n + 7.
Original entry on oeis.org
8, 16, 64, 112, 272, 432, 832, 1232, 2072, 2912, 4480, 6048, 8736, 11424, 15744, 20064, 26664, 33264, 42944, 52624, 66352, 80080, 99008, 117936, 143416, 168896, 202496, 236096, 279616, 323136, 378624, 434112, 503880, 573648, 660288, 746928, 853328, 959728, 1089088, 1218448
Offset: 1
a(1) = 8. The alternating permutation of length 1 + 7 = 8 with the maximum number of copies of 12345 is 13254768. The eight copies are 12468, 12478, 12568, 12578, 13468, 13478, 13568, and 13578.
-
a := proc(n2) local n; n:= floor(n2/2): if n2 = 2*n then 32*binomial(n+4,5) - 16*binomial(n+3,4) else n:=n+1; (4*n*(n^4+5*n^3+10*n^2+10*n+4))/15 fi end; seq(a(n), n=1..20); # Georg Fischer, Nov 25 2022
A195166
Numbers expressible as 2^a - 2^b, with 0 <= b < a, such that n^a - n^b is divisible by 2^a - 2^b for all n.
Original entry on oeis.org
1, 2, 6, 12, 30, 24, 60, 120, 252, 240, 504, 16380, 32760, 65520
Offset: 1
a(3) = 6 belongs to this sequence since (n^3 - n)/6 = C(n+1, 3) = A000292(n-1).
- M. Ram Murty and V. Kumar Murty, On a Problem of Ruderman, Amer. Math. Monthly 118 (2011), 644-650, available from the first author's website.
- Harry Ruderman, Problem E2468, Amer. Math. Monthly 81 (1974), p. 405.
- A. Schinzel, On primitive prime factors of a^n - b^n, Proc. Cambridge Phil. Soc. 58 (1962), 556-562.
- Qi Sun and Ming Zhi Zhang, Pairs where 2^a-2^b divides n^a-n^b for all n, Proc. Amer. Math. Soc. 93 (1985), 218-220.
- The Mod Set Stanford University and Carl Pomerance, When 2^m - 2^n divides 3^m - 3^n, remarks to Problem E2468*, Amer. Math. Monthly 84 (1977), 59-60.
- W. Y. Velez, When 2^m - 2^n divides 3^m - 3^n, remarks to Problem E2468, Amer. Math. Monthly 83 (1976), 288-289.
Comments