cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A255441 Carmichael numbers of the form (60k+41)*(90k+61)*(150k+101), where 60k+41, 90k+61 and 150k+101 are all primes.

Original entry on oeis.org

252601, 3828001, 82929001, 366652201, 8251854001, 12173703001, 25749237001, 67495942201, 82380774001, 285983187601, 802204143001, 1039708768201, 1068674250001, 1158788350201, 2997587784001, 3236207713201, 4467180843001, 7902515425201, 8470346587201
Offset: 1

Views

Author

Vincenzo Librandi, Feb 24 2015

Keywords

Crossrefs

Cf. A255512 (associated k).

Programs

  • Magma
    [(60*n+41)*(90*n+61)*(150*n+101): n in [0..300]| IsPrime(60*n+41) and IsPrime(90*n+61) and IsPrime(150*n+101)];
    
  • Mathematica
    f[k_] := {60*k + 41, 90*k + 61, 150*k + 101}; Times @@ f[#]& /@ Select[Range[0, 500], And @@ PrimeQ[f[#]] &] (* Amiram Eldar, Apr 24 2024 *)
  • PARI
    lista(kmax) = for(k = 0, kmax, if(isprime(60*k + 41) && isprime(90*k + 61) && isprime(150*k + 101), print1((60*k+41)*(90*k+61)*(150*k+101), ", "))); \\ Amiram Eldar, Apr 24 2024

Extensions

First term added from Bruno Berselli, Feb 24 2015

A290811 Numbers n such that (6n-1, 6n+1), (12n-1, 12n+1) and (18n-1, 18n+1) are 3 pairs of twin primes.

Original entry on oeis.org

1, 8925, 70070, 70385, 270725, 355040, 566650, 866635, 874335, 1091545, 1230740, 1295980, 1586095, 1594285, 1738380, 1974210, 2201325, 2427145, 2436665, 3124660, 3349990, 3599470, 3661350, 4059825, 4101790, 4486020, 4726540, 5139680, 5613370, 5898655, 6279035
Offset: 1

Views

Author

Amiram Eldar, Aug 11 2017

Keywords

Comments

If n is in the sequence then (6n+1)*(12n+1)*(18n+1) is a Carmichael number (A002997) and (6n-1)*(12n-1)*(18n-1) is a Lucas-Carmichael number (A006972).
Intersection of A046025 and A290810.
The first 10 pairs of corresponding Lucas-Carmichael and Carmichael numbers ((6n-1)*(12n-1)*(18n-1), (6n+1)*(12n+1)*(18n+1)) are:
(935, 1729)
(921329139943799, 921392227198801)
(445860973748310119, 445864862313790921)
(451901165073782759, 451905088679976961)
(25715181770344848599, 25715239817629143601)
(58001133699332691839, 58001233533626759041)
(235803065459494289399, 235803319764534509401)
(843555229160685647759, 843555823997214441961)
(866240412591524160959, 866241018045184403161)
(1685504102154302331719, 1685505045798928055521)
(2416038446298343361039, 2416039645957333860241)

Examples

			1 is in the sequence since (6*1 - 1, 6*1 + 1) = (5, 7), (12*1 - 1, 12*1 + 1) = (11, 13) and (18*1 - 1, 18*1 + 1) = (17, 19) are all pairs of twin primes.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; Do[ If[ AllTrue[{6 m - 1, 6 m + 1, 12 m - 1, 12 m + 1, 18 m - 1,
        18 m + 1}, PrimeQ ], AppendTo[seq, m]], {m, 1, 10^7} ]; seq
    Select[Range[6280000],AllTrue[{6#+1,6#-1,12#+1,12#-1,18#+1,18#-1},PrimeQ]&] (* Harvey P. Dale, Jun 21 2024 *)
  • PARI
    isok(n) = isprime(6*n-1) && isprime(6*n+1) && isprime(12*n-1) && isprime(12*n+1) && isprime(18*n-1) && isprime(18*n+1); \\ Michel Marcus, Aug 11 2017

A317126 Numbers of the form: (6*m + 1) * (12*m + 1) * Product_{i=1..k-2} (9 * 2^i * m + 1), where k >= 3, with the condition that each of the factors is prime and that m is divisible by 2^(k-4).

Original entry on oeis.org

1729, 63973, 294409, 56052361, 118901521, 172947529, 216821881, 228842209, 1299963601, 2301745249, 9624742921, 11346205609, 13079177569, 21515221081, 27278026129, 65700513721, 71171308081, 100264053529, 168003672409, 172018713961, 173032371289, 192739365541
Offset: 1

Views

Author

Daniel Suteu, Jul 21 2018

Keywords

Comments

Also known as extended Chernick Carmichael numbers.
Each term of this sequence is the product of 3 or more distinct prime factors.

Crossrefs

Cf. A033502.

A382809 a(n) = (6*n + 1)*(12*n + 1)*(18*n + 1).

Original entry on oeis.org

1, 1729, 12025, 38665, 89425, 172081, 294409, 464185, 689185, 977185, 1335961, 1773289, 2296945, 2914705, 3634345, 4463641, 5410369, 6482305, 7687225, 9032905, 10527121, 12177649, 13992265, 15978745, 18144865, 20498401, 23047129, 25798825, 28761265, 31942225, 35349481
Offset: 0

Views

Author

Stefano Spezia, Apr 05 2025

Keywords

Comments

a(n) is a Carmichael number if all the three factors (6*n + 1), (12*n + 1), and (18*n + 1) are prime (see Chernick and Ribenboim).

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 101.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 146.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,1729,12025,38665},31]

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: (1 + 1725*x + 5115*x^2 + 935*x^3)/(1 - x)^4.
E.g.f.: exp(x)*(1 + 1728*x + 4284*x^2 + 1296*x^3).
a(n) = A016921(n) * A017533(n) * A161705(n).
a(n) == 1 (mod 72).

A319008 Let k = A000396(n) be the n-th perfect number, a(n) is the least number m such that k*d*m + 1 is prime for all of the proper divisors d of k so their product is a Carmichael number.

Original entry on oeis.org

1, 2136, 13494274080, 216818853118725
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2018

Keywords

Comments

Chernick proved that (6m + 1)*(12m + 1)*(18m + 1) is a Carmichael number, if all the 3 factors are primes (A033502, A046025).
Lieuwens generalized it to Product_{i} (k*d(i)*m + 1), for k a perfect number.
a(1) corresponds to 6. It was found by Jack Chernick in 1939.
a(2) corresponds to 28. It was found by Dubner in 1996. Lieuwens evaluated that the least corresponding Carmichael number > 10^27.
a(3) corresponds to 496. It was found by Jim Fougeron in 2002 (Dubner found a larger value: 474382033125).
a(4) corresponds to 8128. It was found by Phil Carmody in 2002.
The corresponding Carmichael numbers are 1729, 599966117492747584686619009, 1.631... * 10^126, 4.559... * 10^260, ...

Examples

			28 = 1 + 2 + 4 + 7 + 14 is the second perfect number. 2136 is the least number m such that 28*1*333 + 1 = 59809, 28*2*2136 + 1 = 119617, 28*4*2136 + 1 = 239233, 28*7*2136 + 1 =  418657 and 28*14*2136 + 1 = 837313 are all primes, therefore 59809*119617*239233*418657*837313 = 599966117492747584686619009 is a Carmichael number.
		

References

  • Harold Davenport, The Higher Arithmetic, Cambridge University Press, 7th ed., 1999, exercise 8.4.
  • Harvey Dubner, Carmichael numbers and Egyptian fractions, Mathematica japonicae, Vol. 43, No. 2 (1996), pp. 411-419.

Crossrefs

Programs

  • Mathematica
    ms = {2, 3, 5, 7, 13}; ns = Length[ms]; M[p_] := 2^(p - 1)*(2^p - 1); L[m_] := Module[{}, d = Most[Divisors[m]]*m; aQ[n_] := AllTrue[d*n + 1, PrimeQ]; n=1; While[!aQ[n], n++];n]; s={}; Do[m = M[ms[[k]]]; b = L[m]; AppendTo[s, b], {k, 1, ns}]; s

A343979 Composite numbers m such that lambda(m) = lambda(D_{m-1}), where lambda(n) is the Carmichael function of n (A002322) and D_k is the denominator (A027642) of Bernoulli number B_k.

Original entry on oeis.org

5615659951, 36901698733, 55723044637, 776733036121, 2752403727511, 7725145165297, 14475486778537, 15723055492417, 22824071195485, 29325910221631, 54669159894469, 62086332981241, 125685944708905, 180225455689481, 298620660945331, 335333122310629, 426814989321721
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, May 06 2021

Keywords

Comments

Squarefree composites m such that LCM_{prime p|m} (p-1) = LCM_{prime p, p-1|m-1} (p-1).
Carmichael numbers m such that LCM_{prime p|m} (p-1) = LCM_{prime p, p-1|m-1} (p-1), i.e., with A173614(m) = A346467(m).
Carmichael numbers m such that their index (m-1)/lambda(m) = A346468(m), cf. A174590.
Carl Pomerance noted that, for k = 40826, Chernick's Carmichael number (6k+1)*(12k+1)*(18k+1) = 88189878776579929 satisfies this condition.
Theorem: lambda(m) | lambda(D_{m-1}) if and only if m | D_{m-1}.
Composites m such that lambda(m) | lambda(D_{m-1}) are all Carmichael numbers, defined as composites m such that lambda(m) | m-1, while lambda(D_{m-1}) | m-1 for every m.
Note that if p is prime, then lambda(p) = lambda(D_{p-1}) = p-1.

Crossrefs

Programs

  • Mathematica
    c = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; q[d_] := If[PrimeQ[d + 1], d, 1]; Select[c, LCM @@ (FactorInteger[#][[;; , 1]] - 1) == LCM @@ (q /@ Divisors[# - 1]) &]
  • PARI
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    A173614(n) = lcm(apply(p->p-1, factor(n)[, 1]));
    A346467(n) = if(1==n,n,my(m=1); fordiv(n-1,d,if(isprime(1+d),m = lcm(m,d))); (m));
    isA343979(n) = ((n>1) && !isprime(n) && (!((n-1)%A002322(n))) && A173614(n)==A346467(n)); \\ Antti Karttunen, Jul 22 2021

A379656 Carmichael numbers that are the sum of 2 positive cubes.

Original entry on oeis.org

1729, 15841, 46657, 126217, 188461, 1082809, 1773289, 2628073, 3146221, 5049001, 6868261, 14469841, 19683001, 31146661, 40917241, 78091201, 92625121, 144218341, 252141121, 1836304561, 2616662881, 3035837161, 4354716961, 4828075561, 10779325921, 13200275881, 14235803713
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2024

Keywords

Comments

Below 10^22 there are only 2 Carmichael numbers that are the sum of two positive cubes in two or more different ways (i.e., in A001235): 1729 = 1^3 + 12^3 = 9^3 + 10^3 and 23226658794001 = 9001^3 + 28230^3 = 19108^3 + 25329^3.
Chernick's Carmichael numbers (A033502) are Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1), where 6*k+1, 12*k+1 and 18*k+1 are all primes (k is a term of A046025). There are no Chernick's Carmichael numbers other than 1729 that are the sum of two positive cubes in two or more different ways (Lagarias, 2018). In the solution to Lagarias's problem it is noted that John P. Robertson showed that if there are Chernick's Carmichael numbers other than 1729 (corresponding to k = 1) that are the sum of two positive cubes (i.e., terms of this sequence), then they have k > 10^5000.

Crossrefs

Intersection of A002997 and A003325.
A265628 is a subsequence.

Programs

  • Mathematica
    carmQ[n_] := CompositeQ[n] && Divisible[n-1, CarmichaelLambda[n]]; Select[Range[200000], carmQ[#] && Length[PowersRepresentations[#, 2, 3]] > 0 &]
  • PARI
    isA003325(n) = #select(v->min(v[1], v[2])>0, thue(thueinit('z^3+1);, n)) > 0; \\ Charles R Greathouse IV at A003325
    is(n) = (n > 1) && !isprime(n) && !((n-1) % lcm(znstar(n)[2])) && isA003325(n);

A319011 Let k = A064771(n) be the n-th pseudoperfect number such that {d(i)} is a unique subset of its proper divisors that sums to k, a(n) is the least number m such that k*d(i)*m + 1 is prime for all d(i) in this subset so their product is a Carmichael number.

Original entry on oeis.org

1, 333, 2136, 14, 72765, 49, 9765, 5, 154, 490, 276, 55, 86, 104, 228195, 5, 25597845, 264, 220, 181, 24403740, 70, 226, 234, 199250835, 215, 358293, 13494274080, 49, 70, 14753835, 685, 35, 154, 60, 7307904366, 1, 570, 21792528, 154, 216, 145, 770, 228, 236
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2018

Keywords

Comments

Product_{i} (k*d(i)*m + 1) is a Carmichael number.
Chernick proved that (6m + 1)*(12m + 1)*(18m + 1) is a Carmichael number, if all the 3 factors are prime (A033502, A046025).
Lieuwens generalized it to Product_{i} (k*d(i)*m + 1), for k a perfect number (A000396), e.g., A067199 for k = 28.
Rotkiewicz generalized it to any number k with a subset of its proper divisors that sums to k.
The corresponding generated Carmichael numbers are 1729, 393575432565765601, 599966117492747584686619009, 17167430884969, 11744090279809908081796578516491199598397832961, 3680409480386689, 617027029751094776871101828064081267143041, 7622722964881, 700705956080852569, 90694625332467786841, 24182595473200959889, 553229304821570521, 3915654940974324169, 9215447790472998049, 4890416189580986381506017143209122707839833885365268481, 1746281192537521, ...
Supersequence of A319008.

Examples

			20 = 1 + 4 + 5 + 10 is the sum of a single subset of the proper divisors of 20. 333 is the least number such that 20*1*333 + 1 = 6661, 20*4*333 + 1 = 26641, 20*5*333 + 1 = 33301, and 20*10*333 + 1 = 66601 are all primes, therefore 6661*26641*33301*66601 = 393575432565765601 is a Carmichael number.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{d = Most[Divisors[n]]}, SeriesCoefficient[Series[Product[1 + x^i, {i, d}], {x, 0, n}], n] == 1]; s = Select[Range[300], okQ]; divSubset[n_] := Module[{d = Most[Divisors[n]]}, divSets = Subsets[d]; ns = Length[divSets];
      Do[divs = divSets[[k]]; If[Total[divs] == n, Break[]], {k, 1, ns}]; divs]; leastMultiplier[n_] := Module[{divs = divSubset[n]}, m = 1;
      While[! AllTrue[n*m*divs + 1, PrimeQ], m++]; m]; seq = {}; Do[s1 = s[[k]]; m = leastMultiplier[s1]; AppendTo[seq, m], {k, 1, Length[s]}]; seq (* after Harvey P. Dale at A064771 *)
Previous Showing 11-18 of 18 results.