cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A330987 Alternatively add and half-multiply pairs of the nonnegative integers.

Original entry on oeis.org

1, 3, 9, 21, 17, 55, 25, 105, 33, 171, 41, 253, 49, 351, 57, 465, 65, 595, 73, 741, 81, 903, 89, 1081, 97, 1275, 105, 1485, 113, 1711, 121, 1953, 129, 2211, 137, 2485, 145, 2775, 153, 3081, 161, 3403, 169, 3741, 177, 4095, 185, 4465, 193, 4851, 201, 5253, 209
Offset: 1

Views

Author

George E. Antoniou, Jan 05 2020

Keywords

Comments

In groups of two, add and half-multiply the integers: 0+1, (2*3)/2, 4+5, (6*7)/2, ....
From Bernard Schott, Jan 06 2020: (Start)
The bisection of this sequence gives:
For n odd = 2*k+1, k >= 0: a(2*k+1) = 8*k+1 = A017077(k),
For n even = 2*k, k >= 1: a(2*k) = T(4*k-2) = A000217(4*k-2) = (2*k-1)*(4*k-1) = A033567(k) where T(j) is the j-th triangular number. (End)

Crossrefs

Cf. A330983.
Interspersion of A017077 and A033567 (excluding first term). - Michel Marcus, Jan 06 2020

Programs

  • Mathematica
    a[n_]:=If[OddQ[n],4n-3,(n-1)(2n-1)]; Array[a,53] (* Stefano Spezia, Jan 05 2020 *)
  • PARI
    Vec(x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jan 06 2020

Formula

From Colin Barker, Jan 05 2020: (Start)
G.f.: x*(1 + 3*x + 6*x^2 + 12*x^3 - 7*x^4 + x^5) / ((1 - x)^3*(1 + x)^3).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6.
a(n) = -1 + 2*(-1)^n - (1/2)*(-1+7*(-1)^n)*n + (1+(-1)^n)*n^2.
(End)
E.g.f.: (1 + 4*x + 2*x^2)*cosh(x) - (3 + x)*sinh(x) - 1. - Stefano Spezia, Jan 05 2020 after Colin Barker

A256833 a(n) = (4*n+3)*(4*n+2).

Original entry on oeis.org

6, 42, 110, 210, 342, 506, 702, 930, 1190, 1482, 1806, 2162, 2550, 2970, 3422, 3906, 4422, 4970, 5550, 6162, 6806, 7482, 8190, 8930, 9702, 10506, 11342, 12210, 13110, 14042, 15006, 16002, 17030, 18090, 19182, 20306, 21462, 22650, 23870, 25122, 26406
Offset: 0

Views

Author

Bruce Zimov, Apr 10 2015

Keywords

Comments

Since 0 = Sin(Pi) = Sum_{n>=0}(-1)^n*Pi^(2n+1)/(2n+1)!, we can move the negative terms to the other side of the equation to get: Sum_{n>=0} Pi^(4n+1)/(4n+1)! = Sum_{n>=0}Pi^(4n+3)/(4n+3)!.
Now, if we let f(n) = Pi^(4n+1)/(4n+1)!, then the previous equation can be written as Sum_{n>=0}f(n) = Sum_{n>=0}(Pi^2/((4*n+3)*(4*n+2)))*f(n); a(n) is the n-th denominator on the right hand side.

Crossrefs

Programs

  • Magma
    [16*n^2 + 20*n + 6: n in [0..40]]; // Vincenzo Librandi, Apr 12 2015
    
  • Mathematica
    CoefficientList[Series[(6 + 24 x + 2 x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 12 2015 *)
  • PARI
    vector(50,n,(4*n-1)*(4*n-2)) \\ Derek Orr, Apr 13 2015

Formula

a(n) = 16*n^2 + 20*n + 6.
a(n) = 2*A033567(n+1).
G.f.: (6+24*x+2*x^2)/(1-x)^3. - Vincenzo Librandi, Apr 12 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Vincenzo Librandi, Apr 12 2015
a(n) = A016825(n)*A004767(n). - Tom Edgar, Apr 12 2015
a(n) = A002378(4*n+2) = 2*A000217(4*n+2). - Ivan N. Ianakiev, Apr 17 2015
E.g.f.: 2*exp(x)*(3+18*x+8*x^2). - Wesley Ivan Hurt, Apr 29 2020
From Amiram Eldar, Jan 03 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/8 - log(2)/4.
Sum_{n>=0} (-1)^n/a(n) = sqrt(2)*log(sqrt(2)+1)/4 - (sqrt(2)-1)*Pi/8. (End)

Extensions

More terms from Vincenzo Librandi, Apr 12 2015

A257942 a(n) = (n+1)*(n+2)/A014695(n+1), where A014695 is repeat (1, 2, 2, 1).

Original entry on oeis.org

1, 3, 12, 20, 15, 21, 56, 72, 45, 55, 132, 156, 91, 105, 240, 272, 153, 171, 380, 420, 231, 253, 552, 600, 325, 351, 756, 812, 435, 465, 992, 1056, 561, 595, 1260, 1332, 703, 741, 1560, 1640, 861, 903, 1892, 1980, 1035, 1081, 2256, 2352, 1225, 1275, 2652
Offset: 0

Views

Author

Paul Curtz, Jul 14 2015

Keywords

Comments

Consider, for n >= 0, a sequence s(n). A useful transform is wi(n) = s(0), s(2), s(3), ..., i.e., s(n) without s(1).
For s(n) = 1/(n+1), wi(n)= 1, 1/3, 1/4, 1/5, ..., whose inverse binomial transform is f(n) = 1, -2/3, 7/12, -11/20, 8/15, -11/21, 29/56, -37/72, 23/45, -28/55, 67/132, -79/156, 46/91, -53/105, 121/240, -137/272, ...
The denominator of f(n) is a(n), for n >= 0.
If the numerator of f(n) is b(n), then it can be seen that b(n+1) = -(-1)^n* A226089(n).
Alternating a(n) - b(n) with a(n) + b(n) yields 0, 1, 5, 9, ... = A160050(n+1).
a(4n+1) is linked to the Rydberg-Ritz spectra of hydrogen.
h(n) = 0, 0, 1, 1, 4, 4, 3, 3, 8, 8, 5, 5, ... = duplicated A022998(n).
A022998(n) is linked to the Balmer series (see A246943(n)).
With an initial 0 and offset=0, a(-n) = a(n). Then (a(n+10) - a(n-10))/10 = 1, 6, 10, 7, 9, 22, 26, ... = g(n). a(n) mod 9 is of period 20.

Crossrefs

Cf. A002378(n+1), A014695(n+1)=A130658(n+2), A014634, A033567(n+1), A104188(n+1), 4*A007742(n+1), A160050 (in A226089), A022998, A109613, A000217(n+1), A246943.

Programs

  • Maple
    A257942:=n->(n+1)*(n+2)/(3/2+(-1)^((2*n+7+(-1)^n)/4)/2): seq(A257942(n), n=0..100); # Wesley Ivan Hurt, Jul 18 2015
  • Mathematica
    CoefficientList[Series[-(x^6 + 9 x^4 - 8 x^3 + 9 x^2 + 1)/((x - 1)^3 (x^2 + 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jul 14 2015 *)
    (* Using inverse binomial transform *) s[0]=1; s[n_] := 1/(n+2); f[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*s[k], {k, 0, n}]; Table[f[n]//Denominator, {n, 0, 50}] (* Jean-François Alcover, Jul 14 2015 *)
    LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 3, 12, 20, 15, 21, 56, 72, 45}, 55] (* Vincenzo Librandi, Jul 15 2015 *)
  • PARI
    Vec(-(x^6+9*x^4-8*x^3+9*x^2+1)/((x-1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jul 14 2015
    
  • PARI
    a(n)=(n+1)*(n+2)/if(n%4<2,2,1) \\ Charles R Greathouse IV, Jul 14 2015

Formula

a(4n) = (2*n+1)*(4*n+1).
a(4n+1) = (2*n+1)*(4*n+3).
a(4n+2) = (4*n+3)*(4*n+4).
a(4n+3) = (4*n+4)*(4*n+5).
a(n) = A064038(n+2) * (period 4: repeat 1, 1, 4, 4).
From Colin Barker, Jul 14 2015: (Start)
a(n) = (-1/8+i/8)*(((-3-i*3)+i*(-i)^n+i^n)*(2+3*n+n^2)) where i=sqrt(-1).
G.f.: -(x^6+9*x^4-8*x^3+9*x^2+1) / ((x-1)^3*(x^2+1)^3). (End)
a(n) = h(n+2) * A109613(n+1).
a(n) = (n+1)*(n+2) * period 4:repeat (1, 1, 2, 2) /2.
From Wesley Ivan Hurt, Jul 18 2015: (Start)
a(n) = (n+1)*(n+2)/(3/2+(-1)^((2*n+7+(-1)^n)/4)/2).
a(n) = 3*a(n-1)-6*a(n-2)+10*a(n-3)-12*a(n-4)+12*a(n-5)-10*a(n-6)+6*a(n-7)-3*a(n-8)+a(n-9), n>9. (End)
Sum_{n>=0} 1/a(n) = Pi/4 + 1. - Amiram Eldar, Aug 14 2022

A287057 a(n) = 2*n^2 + n - (n+1) mod 2.

Original entry on oeis.org

3, 9, 21, 35, 55, 77, 105, 135, 171, 209, 253, 299, 351, 405, 465, 527, 595, 665, 741, 819, 903, 989, 1081, 1175, 1275, 1377, 1485, 1595, 1711, 1829, 1953, 2079, 2211, 2345, 2485, 2627, 2775, 2925, 3081, 3239, 3403, 3569, 3741, 3915, 4095
Offset: 1

Views

Author

Dimitris Valianatos, Jun 24 2017

Keywords

Comments

Let r(n) = (a(n)-1)/a(n) if n mod 2 = 1, (a(n)+1)/a(n) otherwise; then Product_{n>=1} r(n) = (2/3) * (10/9) * (20/21) * (36/35) * (54/55) * (78/77) * (104/105) * (136/135) * ... = agm(1,sqrt(2))^2/2 = 0.7177700110461299978211932237.

Crossrefs

Programs

  • Magma
    [2*n^2+n-(n+1) mod 2: n in [1..60]]; // Vincenzo Librandi, Aug 12 2017
  • Maple
    seq(2*n^2 + n - ((n+1) mod 2), n = 1 .. 30); # Robert Israel, Aug 11 2017
  • Mathematica
    a[n_] := 2 n^2 + n - Mod[n + 1, 2]; Array[a, 50] (* Robert G. Wilson v, Aug 10 2017 *)
  • PARI
    {for(n=1,100,print1(2*n^2+n-(n+1)%2", "))}
    

Formula

G.f.: x*(3+3*x+3*x^2-x^3)/((1+x)*(1-x)^3). - Robert Israel, Aug 11 2017
Previous Showing 11-14 of 14 results.