cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A115979 Expansion of (1 - theta_4(q)*theta_4(q^3))/2 in powers of q.

Original entry on oeis.org

1, 0, 1, -3, 0, 0, 2, 0, 1, 0, 0, -3, 2, 0, 0, -3, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, -6, 0, 0, 2, 0, 0, 0, 0, -3, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, -3, 3, 0, 0, -6, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, -6, 0, 0, 2, 0, 1, 0, 0, -6, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, -3, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Feb 09 2006

Keywords

Crossrefs

Programs

  • Maple
    S:=series((1-JacobiTheta4(0,q)*JacobiTheta4(0,q^3))/2, q, 106):
    seq(coeff(S,q,n),n=1..105); # Robert Israel, Nov 20 2017
  • Mathematica
    Drop[CoefficientList[Series[(1 -EllipticTheta[4, 0, q]*EllipticTheta[4, 0, q^3])/2, {q, 0, 110}], q], 1] (* G. C. Greubel, May 09 2019 *)
  • PARI
    {a(n)=local(A); if(n<1, 0, A=x*O(x^n); polcoeff( (eta(x+A)*eta(x^3+A))^2/eta(x^2+A)/eta(x^6+A), n)/-2)}
    
  • Sage
    def E(x): return 1 + 2*sum((-1)^k*x^(k^2) for k in (1..50))
    a=((1 - E(x)*E(x^3))/2).series(x, 110).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 09 2019
  • Scheme
    (define (A115979 n) (- (* (expt -1 n) (A096936 n)))) ;; Follow A096936 for the rest of code. - Antti Karttunen, Nov 20 2017
    

Formula

Expansion of (1-(eta(q)*eta(q^3))^2/(eta(q^2)*eta(q^6)))/2 in powers of q.
Moebius transform is period 12 sequence [1,-1,0,-3,-1,0,1,3,0,1,-1,0,...].
a(n) is multiplicative and a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e)=1, a(p^e) = 1+e if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} x^(k)/(1+x^k+x^(2k)) -4x^(4k)/(1+x^(4k)+x^(8k)).
a(n) = -(-1)^n*A096936(n).
A115978(n) = -2*a(n) if n > 0.

A228447 Expansion of q * (psi(q^3) * psi(q^6)) / (psi(q) * phi(q)) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -3, 7, -15, 30, -57, 104, -183, 313, -522, 852, -1365, 2150, -3336, 5106, -7719, 11538, -17067, 25004, -36306, 52280, -74700, 105960, -149277, 208951, -290706, 402127, -553224, 757158, -1031166, 1397744, -1886151, 2534316, -3391254, 4520112, -6002007
Offset: 1

Views

Author

Michael Somos, Oct 26 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 3*q^2 + 7*q^3 - 15*q^4 + 30*q^5 - 57*q^6 + 104*q^7 - 183*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q^(3/2)]^3 / (EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3]), {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^6 + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^7 * eta(x^3 + A)), n))}

Formula

Expansion of q * (psi(q^3)^3 / psi(q)) / (phi(q) * phi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q)^3 * eta(x^4)^2 * eta(x^6) * eta(x^12)^2 / (eta(x^2)^7 * eta(x^3)) in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 * (1 - 3*v) - v * (1 - 4*v) * (1 - 3*u)^2.
a(n) = -(-1)^n * A187100(n). a(2*n) = -3 * A128638(n).
Convolution inverse is A187145. Convolution with A033716 is A093829.

A129576 Expansion of phi(x) * chi(x) * psi(-x^3) in powers of x where phi(), chi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 2, 0, 2, 3, 2, 0, 1, 6, 2, 0, 2, 0, 2, 0, 3, 6, 0, 0, 2, 3, 2, 0, 2, 6, 2, 0, 0, 0, 4, 0, 2, 3, 2, 0, 2, 6, 0, 0, 1, 6, 2, 0, 4, 0, 2, 0, 0, 6, 2, 0, 2, 0, 2, 0, 3, 6, 2, 0, 2, 0, 0, 0, 2, 9, 2, 0, 0, 6, 2, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 6, 4, 0, 0, 3, 4
Offset: 0

Views

Author

Michael Somos, Apr 23 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). - Michael Somos, Jun 28 2017

Examples

			G.f. = 1 + 3*x + 2*x^2 + 2*x^4 + 3*x^5 + 2*x^6 + x^8 + 6*x^9 + 2*x^10 + ...
G.f. = q + 3*q^4 + 2*q^7 + 2*q^13 + 3*q^16 + 2*q^19 + q^25 + 6*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/8) EllipticTheta[ 3, 0, x] QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := Length @ FindInstance[ x^2 + 3 y^2 == 3 n + 1, {x, y}, Integers, 10^9] / 2; (* Michael Somos, Sep 03 2016 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# == 3, Boole[#2 == 0], # == 2, 3 (1 + (-1)^#2)/2, Mod[#, 3] == 2, (1 + (-1)^#2)/2, True, #2 + 1] & @@@ FactorInteger[3 n + 1])]; (* Michael Somos, Jun 28 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n = 3*n + 1; sumdiv(n, d, kronecker(-3, d) * [0, 1, -2, 1] [n/d%4 + 1] ))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 3*(1-e%2), p==3, 0, p%3==2, 1-e%2, e+1)))}; /* Michael Somos, Jun 28 2017 */

Formula

From Michael Somos, Jun 28 2017: (Start)
Expansion of q^(-1/3) * (2*c(q) + c(-q)) / 3 = q^(-1/3) * (c(q) + 2*c(q^4)) / 3 in powers of q where c() is a cubic AGM theta function.
Expansion of (a(q) - a(q^3) + 2*a(q^4) - 2*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of q^(-1/3) * eta(q^2)^7 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6)) in powers of q. (End)
Euler transform of period 12 sequence [3, -4, 2, -1, 3, -4, 3, -1, 2, -4, 3, -2, ...].
a(n) = b(3*n + 1) where b() is multiplicative and b(2^e) = 3 * (1 + (-1)^e) / 2 if e>0, a(3^e) = 0^e, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1 + (-1)^e)/2 if p == 2 (mod 3).
a(n) = A096936(3*n + 1) = A112298(3*n + 1).
2 * a(n) = A033716(3*n + 1). - Michael Somos, Sep 03 2016
a(n) = (-1)^n * A122161(n). - Michael Somos, Jun 28 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Dec 29 2023

A239074 Given a circle of radius R into which small circles of radius R/2^n are packed in a "hexagonal pattern" (see Comments), a(n) is the number of points at which a small circle is tangent to the big circle.

Original entry on oeis.org

2, 2, 6, 2, 6, 6, 6, 2, 18, 6, 2, 18, 6, 18, 54, 2, 6, 54, 6, 6, 90, 2, 2, 54, 54, 18, 54, 18, 6, 162, 6, 2, 18, 6, 18, 1458, 18, 18, 162, 18, 2, 810, 6, 18, 1458, 2, 6, 486, 18, 162, 486, 54, 6, 486, 18, 54, 162, 18, 2, 4374, 6, 18, 2430, 6, 54, 162, 18, 18, 18, 54
Offset: 1

Views

Author

Kival Ngaokrajang, Apr 06 2014

Keywords

Comments

The construction rule is: (1) Start with a unit circle (big R-circle). (2) Pack circles at radius 1/2^n (small r-circles) on the diameter line of the big circle. (3) Pack small circles in the rows above and below the row packed in the previous step, maintaining a hexagonal packing pattern. The number of small circles in any row is limited so that the circumference of the last small circle does not cross (but is allowed to contact) the circumference of the big circle. (4) Repeat process to the top and bottom rows.
The contact points are the points where the circumference of a small circle contacts the circumference of the big circle, i.e., they are mutually tangent.
See illustration in links.
Also, the number of integer solutions to the equation (2^n-1)^2 = 3*x^2 + y^2. - Andrew Howroyd, May 27 2018

Examples

			n=9 (see the link): In the first quadrant, shown there, there are 4 touching points with the large circle for rows x > 0, namely for the rows 52, 132, 280 and 292. With the trivial 2 touching points with the large circle for the row x=0 this adds to the total number 2 + 4*4 = 18 = a(9). - _Wolfdieter Lang_, Apr 06 2014
		

Crossrefs

Programs

  • Mathematica
    a[1] = 2; a[n_] := Module[{f = FactorInteger[2^n - 1]}, 2*Product[If[Mod[ f[[i, 1]], 3] == 1, 2*f[[i, 2]] + 1, 1] , {i, 1, Length[f]}]];
    Array[a, 70] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    a(n) = {my(f=factor(2^n-1)); 2*prod(i=1, #f~, if(f[i, 1]%3==1, 2*f[i, 2]+1, 1))} \\ Andrew Howroyd, May 27 2018

Formula

a(n) = 2 + 4*A(n), n >= 1, with A(n) the number of integer solutions for x(n,j) = sqrt((2^n-1)^2 + 3*j^2), for j = 1, 2, ..., floor((2^n-1)/sqrt(3)). R = 2^n and r=1 (small radius) was used here. - Wolfdieter Lang, Apr 07 2014
a(n) = A033716((2^n - 1)^2). - Andrew Howroyd, May 27 2018

Extensions

Corrected and extended by Wolfdieter Lang, Apr 06 2014
a(26)-a(70) from Andrew Howroyd, May 27 2018

A320239 Expansion of theta_3(q) * theta_3(q^3) * theta_3(q^5), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 0, 2, 6, 2, 4, 4, 4, 14, 0, 0, 14, 4, 4, 0, 6, 12, 8, 4, 2, 20, 0, 4, 20, 2, 8, 10, 12, 4, 4, 4, 16, 32, 0, 0, 26, 4, 0, 12, 0, 20, 8, 4, 8, 6, 4, 4, 42, 18, 0, 8, 20, 12, 16, 0, 12, 48, 8, 8, 0, 16, 8, 12, 14, 0, 16, 4, 20, 24, 4, 0, 36, 28, 0, 2, 20, 8, 8, 4, 6
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, a_3) to the equation a_1^2 + 3*a_2^2 + 5*a_3^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^(2*k-1)): A000122 (m=1), A033716 (m=2), this sequence (m=3), A320240 (m=4).
Cf. A320078.

A320240 Expansion of theta_3(q) * theta_3(q^3) * theta_3(q^5) * theta_3(q^7), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 0, 2, 6, 2, 4, 6, 8, 14, 4, 12, 18, 12, 12, 8, 34, 12, 8, 32, 10, 28, 0, 16, 44, 18, 16, 14, 54, 8, 12, 48, 32, 52, 28, 32, 42, 40, 8, 44, 92, 28, 16, 56, 28, 30, 44, 12, 86, 74, 8, 32, 72, 24, 40, 104, 72, 56, 32, 56, 56, 112, 8, 38, 166, 24, 36, 40, 56, 88, 52
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, a_3, a_4) to the equation a_1^2 + 3*a_2^2 + 5*a_3^2 + 7*a_4^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^(2*k-1)): A000122 (m=1), A033716 (m=2), A320239 (m=3), this sequence (m=4).
Cf. A320078.

A374295 a(n) is the smallest positive integer k such that A096936(k) = n.

Original entry on oeis.org

1, 7, 4, 91, 2401, 28, 117649, 1729, 196, 31213, 282475249, 364, 13841287201, 1529437, 9604, 53599, 33232930569601, 2548, 1628413597910449, 593047, 470596, 3672178237, 3909821048582988049, 6916, 68574961, 179936733613, 33124, 29059303, 459986536544739960976801, 124852
Offset: 1

Views

Author

Seiichi Manyama, Jul 02 2024

Keywords

Comments

a(n) is the smallest positive integer k such that A033716(k) = 2*n,

Examples

			   n        |        a(n)
------------+-------------------------------------
   2        |            7.
   3 = 3*1  |            4.
   4        |           91 =     7 * 13.
   5        |         2401 =     7^4.
   6 = 3*2  |           28 = 4 * 7.
   7        |       117649 =     7^6.
   8        |         1729 =     7 * 13 * 19.
   9 = 3*3  |          196 = 4 * 7^2.
  10        |        31213 =     7^4 * 13.
  11        |    282475249 =     7^10.
  12 = 3*4  |          364 = 4 * 7 * 13.
  13        |  13841287201 =     7^12.
  14        |      1529437 =     7^6 * 13.
  15 = 3*5  |         9604 = 4 * 7^4.
  16        |        53599 =     7 * 13 * 19 * 31.
  17        |                    7^16.
  18 = 3*6  |         2548 = 4 * 7^2 * 13.
  19        |                    7^18.
  20        |       593047 =     7^4 * 13 * 19.
  21 = 3*7  |       470596 = 4 * 7^6.
  22        |   3672178237 =     7^10 * 13.
  23        |                    7^22.
  24 = 3*8  |         6916 = 4 * 7 * 13 * 19.
  25        |     68574961 =     7^4 * 13^4.
  26        | 179936733613 =     7^12 * 13.
  27 = 3*9  |        33124 = 4 * 7^2 * 13^2.
  28        |     29059303 =     7^6 * 13 * 19.
  29        |                    7^28.
  30 = 3*10 |       124852 = 4 * 7^4 * 13.
		

Crossrefs

Formula

If p is prime, a(p) = 7^(p-1).
a(n) is divisible by 7 for n > 3.

A028613 Expansion of theta_3(q) * theta_3(q^12) + theta_2(q) * theta_2(q^12) in powers of q^(1/4).

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 2*x^4 + 4*x^13 + 2*x^16 + 4*x^21 + 2*x^36 + 4*x^37 + 2*x^48 + ...
G.f. = 1 + 2*q + 4*q^(13/4) + 2*q^4 + 4*q^(21/4) + 2*q^9 + 4*q^(37/4) + 2*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^12] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^12], {x, 0, n/4}]; (* Michael Somos, Feb 22 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) * eta(x^96+A))^5 / (eta(x^4 + A) * eta(x^16 + A) * eta(x^48 + A) * eta(x^192 + A))^2 + 4*x^13 * (eta(x^16 + A) * eta(x^192 + A))^2 / (eta(x^8 + A) * eta(x^96 + A)), n))};

Formula

a(4*n + 2) = a(4*n + 3) = a(8*n + 1) = a(16*n + 8) = a(16*n + 12) = 0. - Michael Somos, Feb 22 2015
a(8*n + 5) = 4*A112607(n-1). a(16*n) = A033716(n). a(16*n + 4) = 2*A112604(n). - Michael Somos, Feb 22 2015

A306518 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{d|k} theta_3(q^d).

Original entry on oeis.org

1, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 0, 4, 2, 1, 2, 2, 2, 2, 0, 1, 2, 0, 4, 6, 0, 0, 1, 2, 2, 0, 4, 0, 4, 0, 1, 2, 0, 6, 2, 4, 0, 0, 0, 1, 2, 2, 0, 6, 2, 8, 4, 2, 2, 1, 2, 0, 4, 2, 4, 4, 8, 0, 6, 0, 1, 2, 2, 2, 4, 0, 14, 0, 6, 2, 0, 0, 1, 2, 0, 4, 6, 4, 0, 8, 0, 6, 0, 4, 0, 1, 2, 2, 0, 2, 0, 8, 2, 6, 6, 8, 0, 4, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 21 2019

Keywords

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  2,  2,  2,  2,  2,  2,  ...
  0,  2,  0,  2,  0,  2,  ...
  0,  4,  2,  4,  0,  6,  ...
  2,  2,  6,  4,  2,  6,  ...
  0,  0,  0,  4,  2,  4,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[EllipticTheta[3, 0, q^d], {d, Divisors[k]}], {q, 0, n}]][i - n + 1], {i, 0, 13}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{d|k} theta_3(q^d).
Previous Showing 11-19 of 19 results.