cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A123330 Expansion of eta(q^2) * eta(q^3)^6 / (eta(q)^2 * eta(q^6)^3) in powers of q.

Original entry on oeis.org

1, 2, 4, 2, 2, 0, 4, 4, 4, 2, 0, 0, 2, 4, 8, 0, 2, 0, 4, 4, 0, 4, 0, 0, 4, 2, 8, 2, 4, 0, 0, 4, 4, 0, 0, 0, 2, 4, 8, 4, 0, 0, 8, 4, 0, 0, 0, 0, 2, 6, 4, 0, 4, 0, 4, 0, 8, 4, 0, 0, 0, 4, 8, 4, 2, 0, 0, 4, 0, 0, 0, 0, 4, 4, 8, 2, 4, 0, 8, 4, 0, 2, 0, 0, 4, 0, 8, 0, 0, 0, 0, 8, 0, 4, 0, 0, 4, 4, 12, 0, 2, 0, 0, 4, 8
Offset: 0

Views

Author

Michael Somos, Sep 26 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 + 2*q^3 + 2*q^4 + 4*q^6 + 4*q^7 + 4*q^8 + 2*q^9 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]*(QP[q^3]^6/(QP[q]^2*QP[q^6]^3)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, -(-1)^d * kronecker( -3, d)))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^6 / (eta(x + A)^2 * eta(x^6 + A)^3), n))}
    
  • Sage
    A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] + 2*A[1] # Michael Somos, Sep 27 2013

Formula

Expansion of c(q)^2 / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
Expansion of phi(-x^3)^3 / phi(-x) where phi() is a Ramanujan theta function.
a(n) = 2*b(n) where b(n) is multiplicative and b(2^e) = (1 - 3*(-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
Euler transform of period 6 sequence [ 2, 1, -4, 1, 2, -2, ...].
Moebius transform is period 6 sequence [ 2, 2, 0, -2, -2, 0, ...].
a(n) = 2 * A123331(n) if n>0. (-1)^n * a(n) = A113973(n).
G.f.: Product_{k>0} (1 + x^k)/(1 - x^k) * ((1 - x^(3*k)) / (1 + x^(3*k)))^3.
G.f.: 1 + 2 * Sum_{k>0} x^k / (1 - x^k + x^(2*k)) = theta_3(-x^3)^3 / theta_3(-x).
From Michael Somos, Aug 11 2009: (Start)
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u - v)^2 - 2 * u * w * (v - w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (16/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A107760.
a(4*n) = a(3*n) = a(n). a(12*n + 10) = a(6*n + 5) = 0.
a(2*n + 1) = 2 * A033762(n). a(3*n + 1) = 2 * A033687(n). a(4*n + 1) = 2 * A112604(n). a(4*n + 3) = 2 * A112605(n). a(6*n + 1) = 2 * A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 4 * A121361(n). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Nov 14 2023

A132973 Expansion of psi(-q)^3 / psi(-q^3) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 3, -3, 3, 0, 3, -6, 3, -3, 0, 0, 3, -6, 6, 0, 3, 0, 3, -6, 0, -6, 0, 0, 3, -3, 6, -3, 6, 0, 0, -6, 3, 0, 0, 0, 3, -6, 6, -6, 0, 0, 6, -6, 0, 0, 0, 0, 3, -9, 3, 0, 6, 0, 3, 0, 6, -6, 0, 0, 0, -6, 6, -6, 3, 0, 0, -6, 0, 0, 0, 0, 3, -6, 6, -3, 6, 0, 6, -6
Offset: 0

Views

Author

Michael Somos, Sep 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 3*q + 3*q^2 - 3*q^3 + 3*q^4 + 3*q^6 - 6*q^7 + 3*q^8 - 3*q^9 + 3*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(1/2)]^3 / EllipticTheta[ 2, Pi/4, q^(3/2)]/2, {q, 0, n}]; (* Michael Somos, May 26 2013 *)
  • PARI
    {a(n) = if( n<1, n==0, 3 * (-1)^n * sumdiv(n, d, kronecker(-12, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^12 + A )), n))};

Formula

Expansion of b(q^2)^2 / b(-q) = b(q) * b(q^4) / b(q^2) in powers of q where b() is a cubic AGM theta function.
Expansion of (a(q^2) + 2 * a(q^4) - a(q)) / 2 = (c(q)^2 - 5 * c(q) * c(q^4) + 4 * c(q^4)^2) / (3 * c(q^2)) in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, May 26 2013
Expansion of eta(q)^3 * eta(q^4)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -3, 0, -2, -3, -3, 0, -3, -3, -2, 0, -3, -2, ...].
Moebius transform is period 12 sequence [ -3, 6, 0, 0, 3, 0, -3, 0, 0, -6, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 108^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A113447.
G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^(2*k))^3 / ((1 - x^(3*k)) * (1 + x^(6*k))).
G.f.: 1 + 3 * Sum_{k>0} (-1)^k * (x^k + x^(3*k)) / (1 + x^k + x^(2*k)).
G.f.: 1 + 3 * ( Sum_{k>0} x^(6*k-5) / ( 1 + x^(6*k-5) ) - x^(6*k-1) / ( 1 + x^(6*k-1) )).
a(n) = (-1)^n * A107760(n). Convolution inverse of A132974.
a(2*n) = A107760(n). a(2*n + 1) = -3 * A033762(n). a(3*n) = A132973(n). a(3*n + 1) = -3 * A227696(n). - Michael Somos, Oct 31 2015
a(6*n + 1) = -3 * A097195(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0. - Michael Somos, Oct 31 2015

A111932 Expansion of q * (psi(q) * psi(q^3))^2 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 1, 4, 6, 2, 8, 8, 1, 12, 12, 4, 14, 16, 6, 16, 18, 2, 20, 24, 8, 24, 24, 8, 31, 28, 1, 32, 30, 12, 32, 32, 12, 36, 48, 4, 38, 40, 14, 48, 42, 16, 44, 48, 6, 48, 48, 16, 57, 62, 18, 56, 54, 2, 72, 64, 20, 60, 60, 24, 62, 64, 8, 64, 84, 24, 68, 72, 24, 96, 72, 8, 74, 76, 31
Offset: 1

Views

Author

Michael Somos, Aug 21 2005, Apr 18 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 2*q^2 + q^3 + 4*q^4 + 6*q^5 + 2*q^6 + 8*q^7 + 8*q^8 + q^9 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 223 Entry 3(iii).
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 87, Eq. (33.2).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ Mod[n/d, 2] d KroneckerSymbol[ 9, d], { d, Divisors[ n]}]]; (* Michael Somos, Sep 19 2013 *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^2] QPochhammer[ q^6])^4 / (QPochhammer[ q] QPochhammer[ q^3])^2, {q, 0, n}]; (* Michael Somos, Sep 19 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, (n/d % 2) * d * (d%3>0)))};
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==2, p^e, if( p==3, 1, (p^(e+1) - 1) / (p-1)))))) };
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^4 / (eta(x + A) * eta(x^3 + A))^2, n))};
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=50) . basis();  A[1] + 2*A[2]; # Michael Somos, Sep 19 2013

Formula

Expansion of (1/3) * (b(q^2)^2 / b(q))* (c(q^2)^2 / c(q)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q^2) * eta(q^6))^4 / (eta(q) * eta(q^3))^2 in powers of q.
Euler transform of period 6 sequence [ 2, -2, 4, -2, 2, -4, ...].
Multiplicative with a(2^e) = 2^e, a(3^e) = 1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w * (u - 4*v) - v * (v - 4*w)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (3/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A131946. - Michael Somos, Sep 19 2013
G.f.: Sum_{k>0} k * x^k * (1 - x^(2*k))^2 / (1 - x^(6*k)) = x * Product_{k>0} ((1 + x^k) * (1 + x^(3*k)))^4 * ((1 - x^k) * (1 - x^(3*k)))^2.
a(3*n) = a(n), a(2*n) = 2 * a(n).
Convolution square of A033762. - Michael Somos, Sep 19 2013
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^s) * (1 - 1/3^(s-1)) * zeta(s-1) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = 0.411233... (A222171). (End)

A004046 Theta series of extremal 3-modular even 24-dimensional lattice with minimal norm 6 and det = 3^12.

Original entry on oeis.org

1, 0, 0, 26208, 530712, 6368544, 47331648, 256864608, 1116087336, 4092877152, 12996075456, 37058557536, 96952754808, 232778774592, 526258264896, 1128148021728, 2286143305992, 4451523096384, 8386247967552, 15130902687264, 26614339616592, 45684687301344
Offset: 0

Views

Author

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 729 (t/i)^12 f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 21 2015

Examples

			G.f. = 1 + 26208*x^3 + 530712*x^4 + 6368544*x^5 + 47331648*x^6 + ...
G.f. = 1 + 26208*q^6 + 530712*q^8 + 6368544*q^10 + 47331648*q^12 + ...
		

References

  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

Cf. A107657.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 12), 22);  A[1] + 26208*A[4] + 530712*A[5]; /* Michael Somos, Dec 21 2015 */
    
  • Mathematica
    a[ n_] := With[ {U1 = QPochhammer[ q]^3, U3 = QPochhammer[ q^3]^3, U9 = QPochhammer[ q^9]^3}, With[ {z = ( 1 + 9 q U9/U1)^3}, SeriesCoefficient[ (U1^3/U3)^4 (27 z^4 - 72 z^3 + 64 z^2 + 16 z - 8) / 27, {q, 0, n}]]]; (* Michael Somos, Dec 25 2015 *)
  • PARI
    th3 = sum(n=1,noo\2, 2*x^(4*n^2), 1+A);
    th4 = sum(n=1,noo\2, (-1)^n*2*x^(4*n^2), 1+A);
    th2 = sum(n=0,noo\2, 2*x^(4*n^2+4*n+1), A);
    chk("th3^4 == th4^4+th2^4");
    /* A004016(x^4) */
    phi0 = th2*subst(th2,x,x^3)+ th3*subst(th3,x,x^3);
    /* 2*x*A033762(x^2) */
    phi1 = th2*subst(th3,x,x^3)+ th3*subst(th2,x,x^3);
    /* A004010(x^2) */
    K_12 = phi0^6+45*phi0^2*phi1^4+18*phi1^6;
    a=phi0;b=phi1;
    A004046=a^12-9/2*a^8*b^4+414*a^6*b^6+1458*a^4*b^8+1998*a^2*b^10+459/2*b^12;
    
  • PARI
    {a(n) = my(A, U1, U3, U9, z); if( n<0, 0, A = x * O(x^n); U1 = eta(x + A)^3; U3 = eta(x^3 + A)^3; U9 = eta(x^9 + A)^3; z = (1 + 9 * x * U9/U1)^3; polcoeff( (U1^3/U3)^4 * (27*z^4 - 72*z^3 + 64*z^2 + 16*z - 8) / 27, n))}; /* Michael Somos, Dec 25 2015 */

Formula

Theta series = a^12 - 9/2*a^8*b^4 + 414*a^6*b^6 + 1458*a^4*b^8 + 1998*a^2*b^10 + 459/2*b^12 (see PARI code for details).
G.f.: (27*a(x)^12 - 72*a(x)^9*b(x)^3 + 64*a(x)^6*b(x)^6 + 16*a(x)^3*b(x)^9 - 8*b(x)^12) / 27 where a(), b() are cubic AGM theta functions, - Michael Somos, Dec 25 2015

Extensions

PARI code from Michael Somos, Jun 07 2005

A115978 Expansion of phi(-q) * phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, -2, 6, 0, 0, -4, 0, -2, 0, 0, 6, -4, 0, 0, 6, 0, 0, -4, 0, -4, 0, 0, 0, -2, 0, -2, 12, 0, 0, -4, 0, 0, 0, 0, 6, -4, 0, -4, 0, 0, 0, -4, 0, 0, 0, 0, 6, -6, 0, 0, 12, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, -4, 6, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, -2, 12, 0, 0, -4, 0, -2, 0, 0, 12, 0, 0, 0, 0, 0, 0, -8, 0, -4, 0, 0, 0, -4, 0, 0, 6, 0
Offset: 0

Views

Author

Michael Somos, Feb 09 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 2*q - 2*q^3 + 6*q^4 - 4*q^7 - 2*q^9 + 6*q^12 - 4*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3], {q, 0, n}] (* Michael Somos, Nov 09 2013 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^2 / (eta(x^2 + A) * eta(x^6 + A)), n))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); -2 * prod( k=1, matsize(A)[1], if(p = A[k,1], e = A[k,2]; if( p==2, -3 * ((e+1)%2), if( p==3, 1, if( p%6==1, e+1, (e+1)%2))))))} /* Michael Somos, Nov 09 2013 */

Formula

Expansion of theta_4(q) * theta_4(q^3) in powers of q.
Expansion of (4 * a(q^4) - a(q)) / 3 = (4 * b(q^4) - b(q)) * b(q) / (3 * b(q^2)) in powers of q where a(), b() are cubic AGM theta functions. - Michael Somos, Nov 09 2013
Expansion of (eta(q) * eta(q^3))^2 / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ -2, -1, -4, -1, -2, -2, ...].
Moebius transform is period 12 sequence [ -2, 2, 0, 6, 2, 0, -2, -6, 0, -2, 2, 0, ...]. - Michael Somos, Nov 09 2013
a(n) = -2*b(n) where b(n) is multiplicative and b(2^e) = -3 * (1 + (-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = 1+e if p == 1 (mod 6), b(p^e) = (1 +(-1)^e) / 2 if p == 5 (mod 6).
Given g.f. A(x), then B(x) = A(x)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v*(u + v)^2 - 4*u * (w^2 - v*w + v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033762. - Michael Somos, Nov 09 2013
G.f.: 1 - 2*(Sum_{k>0} x^k / (1 + x^k + x^(2*k)) - 4 * x^(4*k) / (1 + x^(4*k) + x^(8*k))).
G.f.: (Sum_{k in Z} (-x)^(k^2)) * (Sum_{k in Z} (-x)^(3*k^2)).
a(n) = -2 * A115979(n) unless n=0. a(n) = (-1)^n * A033716(n).
a(3*n + 2) = a(4*n + 2) = 0. a(3*n) = a(n). a(2*n + 1) = -2 * A033762(n). a(3*n + 1) = -2 * A122861(n). a(4*n) = A004016(n). a(4*n + 1) = -2 * A112604(n). a(6*n + 1) = -2 * A097195(n). - Michael Somos, Nov 09 2013

A123530 Expansion of q^(-1/2)*eta(q)^2*eta(q^6)^3/(eta(q^2)*eta(q^3)^2) in powers of q.

Original entry on oeis.org

1, -2, 0, 2, -2, 0, 2, 0, 0, 2, -4, 0, 1, -2, 0, 2, 0, 0, 2, -4, 0, 2, 0, 0, 3, 0, 0, 0, -4, 0, 2, -4, 0, 2, 0, 0, 2, -2, 0, 2, -2, 0, 0, 0, 0, 4, -4, 0, 2, 0, 0, 2, 0, 0, 2, -4, 0, 0, -4, 0, 1, 0, 0, 2, -4, 0, 4, 0, 0, 2, 0, 0, 0, -6, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, -4, 0, 2, 0, 0, 2, -4, 0, 0, -4, 0, 2, 0, 0, 2, -4, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 02 2006

Keywords

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]^2*(QP[q^6]^3/(QP[q^2]*QP[q^3]^2)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<0, 0, n=2*n+1; sumdiv(n, d, kronecker(-12,d)*[0,1,0,-2,0,1][n/d%6+1]))}
    
  • PARI
    {a(n)=local(A, p, e); if(n<0, 0, n=2*n+1; A=factor(n); prod( k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, if(p==3, -2, if(p%6==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^2*eta(x^6+A)^3/eta(x^2+A)/eta(x^3+A)^2, n))}

Formula

Euler transform of period 6 sequence [ -2, -1, 0, -1, -2, -2, ...].
a(n) = b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = -2 if e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} F(x^(6k-5))-F(x^(6k-1)) where F(x)=(x-x^3)/(1+x^2+x^4).
a(3*n+2) = 0.
a(3*n) = A097195(n).
a(3*n+1) = -2*A033762(n).
a(n) = A097109(2*n+1) = A112848(2*n+1).

A112298 Expansion of (a(q) - 3*a(q^2) + 2*a(q^4)) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, -3, 1, 3, 0, -3, 2, -3, 1, 0, 0, 3, 2, -6, 0, 3, 0, -3, 2, 0, 2, 0, 0, -3, 1, -6, 1, 6, 0, 0, 2, -3, 0, 0, 0, 3, 2, -6, 2, 0, 0, -6, 2, 0, 0, 0, 0, 3, 3, -3, 0, 6, 0, -3, 0, -6, 2, 0, 0, 0, 2, -6, 2, 3, 0, 0, 2, 0, 0, 0, 0, -3, 2, -6, 1, 6, 0, -6, 2, 0, 1, 0, 0, 6, 0, -6, 0, 0, 0, 0, 4, 0, 2, 0, 0, -3, 2, -9, 0, 3, 0, 0, 2, -6, 0
Offset: 1

Views

Author

Michael Somos, Sep 02 2005

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 3*q^2 + q^3 + 3*q^4 - 3*q^6 + 2*q^7 - 3*q^8 + q^9 + 3*q^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 106); A[2] - 3*A[3] + A[4] + 3*A[5]; /* Michael Somos, Jan 17 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q, q^2]^3 QPochhammer[ -q^6, q^6]^3 EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, 0, q^(3/2)] / (2 q^(3/8)), {q, 0, n}]; (* Michael Somos, Jan 17 2015 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, JacobiSymbol[ -3, n/#] {1, -2, 1, 0}[[Mod[#, 4, 1]]] &]]; (* Michael Somos, Jan 17 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-3, n/d)*[0, 1, -2, 1][d%4 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^12 + A))^3/ (eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^6 + A)), n))};
    

Formula

From Michael Somos, Jan 17 2015: (Start)
Expansion of b(q) * (b(q^4) - b(q)) / (3*b(q^2)) in powers of q where b() is a cubic AGM theta function.
Expansion of q * chi(-q)^3 * phi(-q^2) * psi(q^3) / chi(-q^6)^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of q * phi(-q)^2 * psi(q^6)^2 / (psi(-q) * psi(-q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of q * f(q) * f(-q, -q^5)^4 / f(q^3)^3 in powers of q where f() is a Ramanujan theta function. (End)
Expansion of (eta(q) * eta(q^12))^3 / (eta(q^2) * eta(q^3) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ -3, -2, -2, -1, -3, 0, -3, -1, -2, -2, -3, -2, ...].
Moebius transform is period 12 sequence [ 1, -4, 0, 6, -1, 0, 1, -6, 0, 4, -1, 0, ...].
Multiplicative with a(2^e) = 3(-1)^e if e>0, a(3^e)=1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 2 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker(-3, k) * x^k * (1 - x^k)^2 / (1 - x^(4*k)).
a(n) = -(-1)^n * A244375(n). a(6*n + 5) = 0, a(3*n) = a(n).
a(2*n) = -3 * A093829(n). a(2*n + 1) = A033762(n). a(3*n + 1) = A129576(n). a(4*n + 1) = A112604(n). a(4*n + 3) = A112605(n). a(6*n + 1) = A097195(n). a(6*n + 2) = -3 * A033687(n).
Sum_{k=1..n} abs(a(k)) ~ (Pi/sqrt(3)) * n. - Amiram Eldar, Jan 23 2024

A112848 Expansion of eta(q)*eta(q^2)*eta(q^18)^2/(eta(q^6)*eta(q^9)) in powers of q.

Original entry on oeis.org

1, -1, -2, 1, 0, 2, 2, -1, -2, 0, 0, -2, 2, -2, 0, 1, 0, 2, 2, 0, -4, 0, 0, 2, 1, -2, -2, 2, 0, 0, 2, -1, 0, 0, 0, -2, 2, -2, -4, 0, 0, 4, 2, 0, 0, 0, 0, -2, 3, -1, 0, 2, 0, 2, 0, -2, -4, 0, 0, 0, 2, -2, -4, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, -2, -2, 2, 0, 4, 2, 0, -2, 0, 0, -4, 0, -2, 0, 0, 0, 0, 4, 0, -4, 0, 0, 2, 2, -3, 0, 1, 0, 0, 2, -2, 0
Offset: 1

Views

Author

Michael Somos, Sep 22 2005

Keywords

Crossrefs

Cf. A033687, A033762, A092829, A093829, A097195, A248897, A255648 (absolute values).

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q]*QP[q^2]*(QP[q^18]^2/(QP[q^6]*QP[q^9])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[2, e_] := (-1)^e; f[3, e_]:= -2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 28 2024 *)
  • PARI
    {a(n)=if(n<1, 0, if(n%3==0, n/=3; -2,1)* sumdiv(n,d,kronecker(-12,d) -if(d%2==0, 2*kronecker(-3,d/2))))}
    
  • PARI
    {a(n)=local(A); if (n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x+A)*eta(x^2+A)*eta(x^18+A)^2/ eta(x^6+A)/eta(x^9+A), n))}

Formula

Euler transform of period 18 sequence [ -1, -2, -1, -2, -1, -1, -1, -2, 0, -2, -1, -1, -1, -2, -1, -2, -1, -2, ...].
Moebius transform is period 18 sequence [1, -2, -3, 2, -1, 6, 1, -2, 0, 2, -1, -6, 1, -2, 3, 2, -1, 0, ...].
Multiplicative with a(2^e) = (-1)^e, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} Kronecker(-3, k) x^k(1-x^(2k))^2/(1-x^(6k)) = x Product_{k>0} (1-x^k)(1-x^(2k))(1+x^(9k))(1+x^(6k)+x^(12k)).
a(3n) = -2*A092829(n). a(3n+1) = A093829(3n+1) = A033687(n). a(3n+2) = A093829(3n+2). a(6n)/2 = A093829(n). a(6n+1) = A097195(n). a(6n+3) = -2*A033762(n). a(6n+5) = 0.
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 23 2024

A244375 Expansion of (a(q) + 3*a(q^2) - 4*a(q^4)) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 1, -3, 0, 3, 2, 3, 1, 0, 0, -3, 2, 6, 0, -3, 0, 3, 2, 0, 2, 0, 0, 3, 1, 6, 1, -6, 0, 0, 2, 3, 0, 0, 0, -3, 2, 6, 2, 0, 0, 6, 2, 0, 0, 0, 0, -3, 3, 3, 0, -6, 0, 3, 0, 6, 2, 0, 0, 0, 2, 6, 2, -3, 0, 0, 2, 0, 0, 0, 0, 3, 2, 6, 1, -6, 0, 6, 2, 0, 1, 0, 0
Offset: 1

Views

Author

Michael Somos, Jun 26 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 3*q^2 + q^3 - 3*q^4 + 3*q^6 + 2*q^7 + 3*q^8 + q^9 - 3*q^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 82); A[2] + 3*A[3] + A[4] - 3*A[5]; /* Michael Somos, Jan 17 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ n/d, 2] {1, 3, 0, -3, -1, 0}[[ Mod[ d, 6, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^8 QPochhammer[ q^3] QPochhammer[ q^12]^4 / (QPochhammer[ q]^3 QPochhammer[ q^4]^4 QPochhammer[ q^6]^4), {q, 0, n}];
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q, q^2]^3 QPochhammer[ -q^6, q^6]^3 EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, Pi/4, q^(3/2)] / (2^(1/2) q^(3/8)), {q, 0, n}]; (* Michael Somos, Jan 17 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, (n/d%2) * [0, 1, 3, 0, -3, -1][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A) * eta(x^12 + A)^4 / (eta(x + A)^3 * eta(x^4 + A)^4 * eta(x^6 + A)^4), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / (1 + x^k + x^(2*k)) * [0, 1, 4, 1][k%4 + 1], x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / (1 - x^(2*k)) * [0, 1, 3, 0, -3, -1][k%6 + 1], x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A);  if( n<1, 0, A = factor(n); prod( j=1, matsize(A)[1], if( p = A[j,1], e = A[j,2]; if( p==2, 3 * (-1)^(e+1), if( p==3, 1, if( p%6 == 1, e+1, (1 + (-1)^e) / 2))))))};
    

Formula

Expansion of (b(q) - b(q^4)) * (b(q) - 2*b(q^4)) / (3* b(q^2)) = b(q^2)^2 * (b(q^4) - b(q)) / (3 * b(q) * b(q^4)) in powers of q where b() is a cubic AGM theta function.
Expansion of q * phi(q)^2 * psi(q^6)^2 / (psi(q) * psi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of q * chi(q)^3 * phi(-q^2) * psi(-q^3) / chi(-q^6)^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Jan 17 2015
Expansion of q * f(-q) * f(q, q^5)^4 / f(-q^3)^3 in powers of q where f() is a Ramanujan theta function. - Michael Somos, Jan 17 2015
Expansion of eta(q^2)^8 * eta(q^3) * eta(q^12)^4 / (eta(q)^3 * eta(q^4)^4 * eta(q^6)^4) in powers of q. - Michael Somos, Jan 17 2015
a(n) is multiplicative with a(2^e) = 3 * (-1)^(e+1) if e>0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
Euler transform of period 12 sequence [ 3, -5, 2, -1, 3, -2, 3, -1, 2, -5, 3, -2, ...].
Moebius transform is period 12 sequence [ 1, 2, 0, -6, -1, 0, 1, 6, 0, -2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A244339.
a(2*n) = 3 * A093829(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A122861(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0.
a(n) = -(-1)^n * A112298(n). - Michael Somos, Jan 17 2015
Sum_{k=1..n} abs(a(k)) ~ (Pi/sqrt(3)) * n. - Amiram Eldar, Jan 23 2024

A005881 Theta series of planar hexagonal lattice (A2) with respect to edge.

Original entry on oeis.org

2, 2, 0, 4, 2, 0, 4, 0, 0, 4, 4, 0, 2, 2, 0, 4, 0, 0, 4, 4, 0, 4, 0, 0, 6, 0, 0, 0, 4, 0, 4, 4, 0, 4, 0, 0, 4, 2, 0, 4, 2, 0, 0, 0, 0, 8, 4, 0, 4, 0, 0, 4, 0, 0, 4, 4, 0, 0, 4, 0, 2, 0, 0, 4, 4, 0, 8, 0, 0, 4, 0, 0, 0, 6, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 6, 4, 0, 4, 0, 0, 4, 4, 0, 0, 4, 0, 4, 0, 0, 4, 4, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also number of ways of writing n as the sum of a triangular number and three times a triangular number.
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Given g.f. A(x), then q^(1/2)*A(q) is denoted phi_1(z) where q=exp(Pi*i*z) in Conway and Sloane.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A033762.

Programs

  • Maple
    d:=proc(r,m,n) local i,t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; [seq(2*(d(1,3,2*n+1)-d(2,3,2*n+1)),n=0..120)];
  • Mathematica
    a[n_] := 2*DivisorSum[2n+1, KroneckerSymbol[-12, #]*Mod[(2n+1)/#, 2]& ]; Table[a[n], {n, 0, 105}] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; 2 * sumdiv(n, d, kronecker( -12, d) * (n/d%2)))}; /* Michael Somos, Nov 05 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 4; 2 * sum(j=1, sqrtint(n\3), (j%2) * issquare(n - 3*j^2)))}; /* Michael Somos, Nov 05 2006 */

Formula

Expansion of q^(-1) * (a(q) - a(q^4)) / 3 in powers of q^2 where a() is a cubic AGM theta function. - Michael Somos, Nov 05 2006
a(n) = 2*A033762(n).
Previous Showing 11-20 of 38 results. Next