cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A198061 Array read by antidiagonals, m>=0, n>=0, A(m,n) = sum{k=0..n} sum{j=0..m} sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 11, 12, 5, 0, 2, 20, 32, 20, 6, 0, 2, 37, 84, 70, 30, 7, 0, 2, 70, 224, 240, 130, 42, 8, 0, 2, 135, 612, 834, 550, 217, 56, 9, 0, 2, 264, 1712, 2968, 2354, 1092, 336, 72, 10, 0, 2, 521, 4884, 10826, 10310, 5551, 1960, 492
Offset: 0

Views

Author

Peter Luschny, Nov 02 2011

Keywords

Examples

			m\n  [0] [1]  [2]   [3]    [4]     [5]    [6]
----------------------------------------------
[0]   1   2    3     4      5       6       7    A000027
[1]   0   2    6    12     20      30      42    A002378
[2]   0   2   11    32     70     130     217    A033994
[3]   0   2   20    84    240     550    1092    A098077
[4]   0   2   37   224    834    2354    5551
[5]   0   2   70   612   2968   10310   28854
		

Crossrefs

Cf. A198060.

Programs

  • Maple
    A198061 := proc(m, n) local i,j,k,pow;
    pow := (a,b) -> if a=0 and b=0 then 1 else a^b fi;
    add(add(add((-1)^(j+i)*binomial(i,j)*pow(n,j)*pow(k,m-j),i=0..m),j=0..m),k=0..n) end:
    for m from 0 to 8 do lprint(seq(A198061(m,n), n=0..6)) od;
  • Mathematica
    Unprotect[Power]; 0^0 = 1; Protect[Power]; a[m_, n_] :=  Sum[(-1)^(j+i)*Binomial[i, j]*n^j*k^(m-j) , {i, 0, m}, {j, 0, m}, {k, 0, n}]; Table[a[m-n, n], {m, 0, 10}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jul 26 2013 *)

Formula

A198061(n,2) = A006127(n+1)

A174814 a(n) = n*(n+1)*(5*n+1)/3.

Original entry on oeis.org

0, 4, 22, 64, 140, 260, 434, 672, 984, 1380, 1870, 2464, 3172, 4004, 4970, 6080, 7344, 8772, 10374, 12160, 14140, 16324, 18722, 21344, 24200, 27300, 30654, 34272, 38164, 42340, 46810, 51584, 56672, 62084, 67830, 73920, 80364, 87172, 94354, 101920, 109880
Offset: 0

Views

Author

Bruno Berselli, Dec 01 2010 - Dec 02 2010

Keywords

Comments

Also zero followed by bisection (even part) of A088003.
Numbers ending in 0, 2 or 4 (cf. 2*A053796(n)). Therefore we can easily see that a(m)^(2*k+1)==-1 (mod 5) only for m in A047219, while a(m)^(2*k)==-1 (mod 5) only for m in A016873 and k odd.

Programs

Formula

G.f.: 2*x*(2+3*x)/(1-x)^4.
a(n) = 2*A033994(n) for n>0.
a(n) = n*A147875(n+1)-sum(k=1..n, A147875(k)) for n>0.
a(-n) = -A144945(n).

A212501 Number of (w,x,y,z) with all terms in {1,...,n} and w > x < y >= z.

Original entry on oeis.org

0, 0, 2, 13, 45, 115, 245, 462, 798, 1290, 1980, 2915, 4147, 5733, 7735, 10220, 13260, 16932, 21318, 26505, 32585, 39655, 47817, 57178, 67850, 79950, 93600, 108927, 126063, 145145, 166315, 189720, 215512, 243848, 274890, 308805
Offset: 0

Views

Author

Clark Kimberling, May 19 2012

Keywords

Comments

For a guide to related sequences, see A211795.
Partial sums of A033994. - J. M. Bergot, Jun 14 2013

Examples

			a(8)=798 which results from the following: 1*(8+9+10+11+12+13+14) + 2*(8+9+10+11+12+13) + 3*(8+9+10+11+12) + 4*(8+9+10+11) + 5*(8+9+10) + 6*(8+9) + 7*(8) = 798 = 77+126+150+152+135+102+56. - _J. M. Bergot_, Aug 23 2022
		

Crossrefs

Cf. A211795.

Programs

  • Maple
    A212501:=n->(n-1)*n*(n+1)*(5*n-2)/24: seq(A212501(n), n=0..60); # Wesley Ivan Hurt, Oct 07 2017
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w > x < y >= z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212501 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,2,13,45},50] (* Harvey P. Dale, May 01 2023 *)
  • PARI
    a(n)=n*(n-1)*(n+1)*(5*n-2)/24 \\ Charles R Greathouse IV, Jun 14 2013

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: x^2*(2+3*x)/(1-x)^5. - Bruno Berselli, May 31 2012
a(n) = (n-1)*n*(n+1)*(5*n-2)/24. - Bruno Berselli, May 31 2012

A337574 a(n) is the dot product of the vectors of the first n primes and the next n primes.

Original entry on oeis.org

6, 31, 112, 279, 652, 1231, 2140, 3363, 5132, 7647, 10600, 14583, 19754, 25435, 31894, 40617, 50866, 62583, 76174, 91431, 108124, 127319, 147868, 172493, 200392, 230281, 262140, 297413, 334756, 374607, 419958, 471113, 524892, 583853, 649458, 717339, 790760, 868997, 951672, 1039871, 1134792
Offset: 1

Views

Author

Robert Israel, Sep 01 2020

Keywords

Examples

			a(3) = 2*7 + 3*11 + 5*13 = 112.
		

Crossrefs

Cf. A000040, A337573 (n such that a(n) is prime).
Cf. A033994 (similar when prime(n) is replaced with n).

Programs

  • Maple
    P:= :
    [seq(P[1..t]^%T . P[t+1..2*t],t=1..250)];
  • Mathematica
    Table[Prime[Range[n]].Prime[Range[n+1,2n]],{n,50}] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    a(n) = sum(k=1, n, prime(k)*prime(n+k)); \\ Michel Marcus, Sep 02 2020

Formula

a(n) = Sum_{k=1..n} prime(k)*prime(n+k).

A257093 a(n) = n*(n+1)*(13*n+2)/6.

Original entry on oeis.org

0, 5, 28, 82, 180, 335, 560, 868, 1272, 1785, 2420, 3190, 4108, 5187, 6440, 7880, 9520, 11373, 13452, 15770, 18340, 21175, 24288, 27692, 31400, 35425, 39780, 44478, 49532, 54955, 60760, 66960, 73568, 80597, 88060, 95970, 104340, 113183, 122512, 132340
Offset: 0

Views

Author

Luce ETIENNE, Apr 16 2015

Keywords

Comments

This sequence gives the number of triangles of all sizes in (5*n^2)-polyiamonds in a tetragonal or hexagonal or heptagonal configuration.
It is the sum of (1/2)*Sum_{j=0..n-1} (n-j)*(5*n+1-j) triangles oriented in one direction and (1/2)*Sum_{j-0..n-1} (n-j)*(5*n-1-3*j) oriented in the opposite direction.
Shäfli's notation: 3.3.3.3.3 for a(1).
The difference between this sequence and A050409(n) equals A000292(n-1).
Also, (1/3)*(A002717(2*n) + A255211(n) - 2*A000330(n)) gives A033994(n): a (5*n^2)-polyiamond in pentagonal configuration that does not belong to this sequence because a(1)=6.
a(n) is odd only when n mod 4 = 1.

Examples

			Second comment a(0) = 0; a(1) = 3 + 2; a(2) = 16 + 12; a(3) = 46 + 36; a(4) = 100 + 80; a(5) = 185 + 150; a(6) = 308 + 252.
		

Crossrefs

Programs

  • Magma
    [n*(n+1)*(13*n+2)/6: n in [0..40]]; // Vincenzo Librandi, Apr 16 2015
  • Mathematica
    Table[n (n + 1) (13 n + 2)/6, {n, 0, 40}] (* Vincenzo Librandi, Apr 16 2015 *)
    CoefficientList[Series[x (5+8x)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,5,28,82},60] (* Harvey P. Dale, Feb 12 2023 *)

Formula

a(n) = Sum_{j=0..n-1} (n-j)*(5*n-2*j).
From Vincenzo Librandi, Apr 16 2015: (Start)
G.f.: x*(5+8*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
E.g.f.: exp(x)*x*(30 + 54*x + 13*x^2)/6. - Stefano Spezia, Mar 02 2025

Extensions

Corrected by Harvey P. Dale, Feb 12 2023
Previous Showing 11-15 of 15 results.