cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A263473 Total number of positive integers < 10^n with multiplicative digital root value 5.

Original entry on oeis.org

1, 7, 40, 172, 607, 2073, 7414, 26070, 84099, 243529, 636130, 1518166, 3354325, 6940831, 13579716, 25318372, 45270813, 78039555, 130259668, 211289368, 334074499, 516217405, 781284010, 1160386410, 1694081935, 2434633461, 3448679742, 4820368690, 6655010857
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

Partial sums of A263479.

Crossrefs

Programs

  • Mathematica
    lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 5 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=1, 10^n - 1, if(t(i) == 5, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263470(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + a(n) + A263474(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).
From Chai Wah Wu, Apr 17 2024: (Start)
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 10.
G.f.: x*(-235*x^7 + 205*x^6 + 161*x^5 + 57*x^4 - 33*x^3 + 15*x^2 - 3*x + 1)/(x - 1)^10. (End)

Extensions

a(9)-a(29) from Hiroaki Yamanouchi, Oct 25 2015

A263479 Total number of n-digit positive integers with multiplicative digital root value 5.

Original entry on oeis.org

1, 6, 33, 132, 435, 1466, 5341, 18656, 58029, 159430, 392601, 882036, 1836159, 3586506, 6638885, 11738656, 19952441, 32768742, 52220113, 81029700, 122785131, 182142906, 265066605, 379102400, 533695525, 740551526, 1014046281, 1371688948, 1834642167, 2428304010
Offset: 1

Views

Author

Martin Renner, Oct 19 2015

Keywords

Comments

First differences of A263473.

Crossrefs

Programs

  • Mathematica
    Last /@ Tally@ IntegerLength@ Select[Range@ 1000000, FixedPoint[Times @@ IntegerDigits@ # &, #] == 5 &] (* Michael De Vlieger, Oct 21 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    a(n) = sum(i=10^(n-1), 10^n - 1, if(t(i) == 5, 1, 0)); \\ Altug Alkan, Oct 19 2015

Formula

A263476(n) + A000012(n) + A263477(n) + A000027(n) + A263478(n) + a(n) + A263480(n) + A000027(n) + A263481(n) + A000217(n) = A052268(n).
a(n) = (1/720)*(3*n^8 + 6*n^7 - 664*n^6 + 6270*n^5 - 25783*n^4 + 55164*n^3 - 57796*n^2 + 23520*n). - Sergio Pimentel, Mar 27 2024
From Chai Wah Wu, Apr 17 2024: (Start)
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n > 9.
G.f.: x*(235*x^7 - 205*x^6 - 161*x^5 - 57*x^4 + 33*x^3 - 15*x^2 + 3*x - 1)/(x - 1)^9. (End)

Extensions

a(9)-a(30) from Hiroaki Yamanouchi, Oct 25 2015

A277061 Numbers with multiplicative digital root > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 115
Offset: 1

Views

Author

J. Lowell, Sep 26 2016

Keywords

Comments

Question: when will numbers not in this sequence outnumber numbers in this sequence? Up to n = 1249, there are 524 terms, so 525 terms not in this sequence. Up to n = 1522, there are n/2 terms. No n > 1522 has that property. Up to 10^10, only about 1.46% of numbers are a term.
To find how many terms there are up to 10^n, see if A009994(i) is for 2 <= i <= binomial(n + 9, 9). If it is then that adds A047726(A009994(i)) to the total (we don't have to worry about digits 0 in A009994(i) as there aren't any for the specified i). One may put further constraints on i. For example, A009994(i) can't contain an even digit and a 5 in the same number. - David A. Corneth, Sep 27 2016

Examples

			25 is not in this sequence because 2*5 = 10 and 1*0 = 0.
		

Crossrefs

Cf. A031347, A034048 (complement).
Cf. A028843 (a subsequence).
Union of A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 1-9).
Cf. A052382 (a supersequence).

Programs

  • Mathematica
    Select[Range@ 112, FixedPoint[Times @@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    is(n) = n=digits(n); while(#n>1,n=digits(prod(i=1,#n,n[i]))); #n>0 \\ David A. Corneth, Sep 27 2016

Extensions

More terms from Michael De Vlieger, Sep 26 2016

A199985 Numbers with digital product = 5.

Original entry on oeis.org

5, 15, 51, 115, 151, 511, 1115, 1151, 1511, 5111, 11115, 11151, 11511, 15111, 51111, 111115, 111151, 111511, 115111, 151111, 511111, 1111115, 1111151, 1111511, 1115111, 1151111, 1511111, 5111111, 11111115, 11111151, 11111511, 11115111, 11151111, 11511111
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

Subsequence of A034052.

Programs

  • Maple
    f:= proc(d) local b,i;
      b:= (10^d-1)/9;
      seq(b+4*10^i,i=0..d-1);
    end proc:
    seq(f(d),d=1..9);
  • Mathematica
    Sort[FromDigits/@Flatten[Table[Permutations[PadRight[{5},n,1]],{n,9}],1]] (* Harvey P. Dale, Sep 03 2016 *)

A201018 Composite numbers whose multiplicative digital root is 5.

Original entry on oeis.org

15, 35, 51, 57, 75, 115, 135, 153, 175, 315, 351, 355, 395, 511, 513, 517, 531, 535, 539, 553, 575, 579, 597, 715, 755, 759, 795, 935, 957, 975, 1115, 1135, 1157, 1175, 1315, 1351, 1355, 1359, 1395, 1513, 1517, 1535, 1539, 1557, 1575, 1593, 1715, 1751, 1755, 1795
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A201017 with respect to A034052.

Examples

			Composite number 153 is in the sequence because 1*5*3=15, 1*5=5.
		

Crossrefs

Cf. A201017 (primes whose multiplicative digital root is 5), A034052 (numbers whose multiplicative digital root is 5).

Programs

  • Mathematica
    mdr5Q[n_]:=NestWhile[Times@@IntegerDigits[#]&,n,#>9&]==5; Select[Range[1800], CompositeQ[ #] &&mdr5Q[#]&] (* Harvey P. Dale, Dec 19 2023 *)

A201017 Primes whose multiplicative digital root is 5.

Original entry on oeis.org

5, 53, 151, 157, 359, 557, 571, 593, 751, 953, 1151, 1153, 1511, 1531, 1553, 1571, 1579, 1597, 1759, 3511, 3533, 5113, 5153, 5171, 5179, 5197, 5333, 5351, 5531, 5711, 5791, 7151, 7159, 7559, 7577, 7591, 7757, 7951, 9157, 11351, 11579, 11593, 11597, 11953
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A201018 with respect to A034052.

Examples

			Prime 157 is in the sequence because 1*5*7=35, 3*5=15, 1*5=5.
		

Crossrefs

Cf. A201018 (composite numbers whose multiplicative digital root is 5), A034052 (numbers whose multiplicative digital root is 5).

A371561 Numbers with multiplicative digital root of 5 that are free of 1s and have their digits in ascending order.

Original entry on oeis.org

5, 35, 57, 355, 359, 557, 579, 3335, 3357, 5579, 5777, 33557, 35559, 333555, 357799, 557779, 3335779, 3355777, 33333577
Offset: 1

Views

Author

Sergio Pimentel, Mar 27 2024

Keywords

Comments

Conjectured to be complete.
If it exists, a(20) > 10^500. - Michael S. Branicky, Apr 18 2024

Crossrefs

Programs

  • Mathematica
    A031347 = Table[NestWhile[Times @@ IntegerDigits[#] &, n, # > 9 &], {n, 1, 100000}]; Select[Range[100000], A031347[[#]] == 5 && DigitCount[#, 10, 1] == 0 && Sort[IntegerDigits[#]] == IntegerDigits[#] &] (* Vaclav Kotesovec, Apr 17 2024 *)
  • Python
    from math import prod
    from itertools import count, islice, combinations_with_replacement as mc
    def A031347(n):
        while n > 9: n = prod(map(int, str(n)))
        return n
    def bgen(): yield from (m for d in count(1) for m in mc((3,5,7,9), d))
    def agen(): yield from (int("".join(map(str, t))) for t in bgen() if A031347(prod(t)) == 5)
    print(list(islice(agen(), 19))) # Michael S. Branicky, Apr 17 2024, edited Apr 18 2024 after Chai Wah Wu
    
  • Python
    from math import prod
    from itertools import count, islice
    def A371561_gen(): # generator of terms
        for l in count(1):
            for a in range(l,-1,-1):
                a3 = 3**a
                for b in range(l-a,-1,-1):
                    b3 = a3*5**b
                    for c in range(l-a-b,-1,-1):
                        d = l-a-b-c
                        d3 = b3*7**c*9**d
                        while d3 > 9:
                            d3 = prod(int(x) for x in str(d3))
                        if d3==5:
                            yield (10**(a+b+c+d)-1)//3+(10**d*(10**c*(10**b+1)+1)-3)*2//9
    A371561_list = list(islice(A371561_gen(),19)) # Chai Wah Wu, Apr 17 2024

A201014 Composite numbers (include 0) whose product of digits is 0.

Original entry on oeis.org

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 102, 104, 105, 106, 108, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 320
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2011

Keywords

Comments

Complement of A056709 with respect to A011540. Subsequence of A199978 (nonprime numbers (including 0) whose multiplicative digital root is 0).

Examples

			Number 102 is in sequence because 1*0*2=0.
		

Crossrefs

Cf. A056709 (primes whose product of digits is 0), A034052 (numbers whose product of digits is 0).

Programs

  • Mathematica
    Join[{0},Select[Range[400],CompositeQ[#]&&DigitCount[#,10,0]>0&]] (* Harvey P. Dale, Jul 27 2022 *)
Previous Showing 11-18 of 18 results.