cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A265129 Triangle read by rows, formed as the sum of the two versions of the natural numbers filling an equilateral triangle.

Original entry on oeis.org

2, 5, 5, 10, 10, 10, 17, 17, 17, 17, 26, 26, 26, 26, 26, 37, 37, 37, 37, 37, 37, 50, 50, 50, 50, 50, 50, 50, 65, 65, 65, 65, 65, 65, 65, 65, 82, 82, 82, 82, 82, 82, 82, 82, 82, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101
Offset: 1

Views

Author

Craig Knecht, Dec 02 2015

Keywords

Comments

The natural numbers can sequentially fill a right- or left-handed equilateral triangle. Componentwise addition of the values of these two triangles produces the present triangle.
The row sums for this triangle give A034262.
The difference between the right- and left-handed triangles produces A049581.

Examples

			Displayed as a triangle:
   2;
   5  5;
  10 10 10;
  17 17 17 17;
  26 26 26 26 26;
  37 37 37 37 37 37;
  ...
		

Crossrefs

Column k=1 gives A002522.
Cf. A049581 (difference of triangles), A034262 (row sum of triangle), A069894 (center column).
Cf. A071237.

Programs

  • Maple
    seq(seq(n^2+1,k=1..n),n=1..10); # Georg Fischer, Oct 01 2021

Formula

T(n,k) = n^2 + 1 for k = 1..n and n >= 1. - Georg Fischer, Oct 01 2021
Sum_{k=1..n} k * T(n,k) = A071237(n). - Alois P. Heinz, Oct 01 2021

Extensions

Row 6 with T(6,k)=37 inserted by Georg Fischer, Oct 01 2021

A303944 Number of partitions of n into at most 1^2 copy of 1, 2^2 copies of 2, 3^2 copies of 3, ... .

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 19, 25, 34, 43, 55, 71, 90, 113, 143, 178, 222, 276, 340, 418, 515, 628, 765, 931, 1128, 1362, 1643, 1974, 2369, 2836, 3385, 4033, 4800, 5694, 6745, 7978, 9418, 11096, 13057, 15334, 17985, 21062, 24626, 28753, 33534, 39045, 45408, 52744, 61187
Offset: 0

Views

Author

Seiichi Manyama, May 03 2018

Keywords

Examples

			  n |                                | a(n)
----+--------------------------------+------
  1 | 1                              |  1
  2 | 2                              |  1
  3 | 3, 2+1                         |  2
  4 | 4, 3+1, 2+2                    |  3
  5 | 5, 4+1, 3+2, 2+2+1             |  4
  6 | 6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2 |  6
		

Crossrefs

Formula

G.f.: Product_{k>=1} (1-x^(k*(k^2+1)))/(1-x^k).

A318765 a(n) = (n + 2)*(n^2 + n - 1).

Original entry on oeis.org

-2, 3, 20, 55, 114, 203, 328, 495, 710, 979, 1308, 1703, 2170, 2715, 3344, 4063, 4878, 5795, 6820, 7959, 9218, 10603, 12120, 13775, 15574, 17523, 19628, 21895, 24330, 26939, 29728, 32703, 35870, 39235, 42804, 46583, 50578, 54795, 59240, 63919, 68838, 74003, 79420, 85095
Offset: 0

Views

Author

Bruno Berselli, Sep 04 2018

Keywords

Comments

First differences are in A004538.
a(n) is divisible by 11 for n = 3, 7, 9, 14, 18, 20, 25, 29, 31, 36, 40, ... with formula (1/3)*(11*m + (1 + (m mod 3))*(-1)^((m-1) mod 3) + 8), m >= 0.

Crossrefs

Cf. A004538.
Subsequence of A047216.
Similar sequences (see Table in Links section): A011379, A027444, A033445, A034262, A045991, A069778.

Programs

  • GAP
    List([0..50], n -> (n+2)*(n^2+n-1));
    
  • Julia
    [(n+2)*(n^2+n-1) for n in 0:50] |> println
  • Magma
    [(n+2)*(n^2+n-1): n in [0..50]];
    
  • Maple
    seq((n+2)*(n^2+n-1),n=0..43); # Paolo P. Lava, Sep 04 2018
  • Mathematica
    Table[(n + 2) (n^2 + n - 1), {n, 0, 50}]
  • Maxima
    makelist((n+2)*(n^2+n-1), n, 0, 50);
    
  • PARI
    vector(50, n, n--; (n+2)*(n^2+n-1))
    
  • Python
    [(n+2)*(n**2+n-1) for n in range(50)]
    
  • Sage
    [(n+2)*(n^2+n-1) for n in (0..50)]
    

Formula

O.g.f.: (-2 + 11*x - 4*x^2 + x^3)/(1 - x)^4.
E.g.f.: (-2 + 5*x + 6*x^2 + x^3)*exp(x).
a(n) = -A033445(-n-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 5. - Wesley Ivan Hurt, Dec 18 2020

A373878 Row products of A317617.

Original entry on oeis.org

1, 1, 25, 3360, 1336336, 1158917760, 1870414552161, 5024209998931200, 20882706457600000000, 126806525870641017811200, 1078732544346879404306640625, 12413512011036114072165367296000, 188031682201497672618081000000000000, 3661653518107730704646938085472357120000
Offset: 0

Views

Author

Stefano Spezia, Jun 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[0]=1; a[n_]:=If[EvenQ[n], (n+n^3)^n/2^n, Pochhammer[(1+n^3)/2, n]]; Array[a,14,0]

Formula

a(n) = A185826(n) = A006003(n)^n for even n.
a(n) = Pochhammer((1 + n^3)/2, n) for odd n.

A055378 Table read by antidiagonals: T(n,k) = n^trinv(k)+n^(k-((trinv(k)*(trinv(k)-1))/2)) where trinv (k) = floor((1+sqrt(1+8*k))/2) and with 0^0 = 1.

Original entry on oeis.org

2, 1, 2, 0, 2, 2, 1, 2, 3, 2, 0, 2, 4, 4, 2, 0, 2, 5, 6, 5, 2, 1, 2, 6, 10, 8, 6, 2, 0, 2, 8, 12, 17, 10, 7, 2, 0, 2, 9, 18, 20, 26, 12, 8, 2, 0, 2, 10, 28, 32, 30, 37, 14, 9, 2, 1, 2, 12, 30, 65, 50, 42, 50, 16, 10, 2, 0, 2, 16, 36, 68, 126, 72, 56, 65, 18, 11, 2, 0, 2, 17, 54, 80, 130
Offset: 0

Views

Author

Henry Bottomley, Jun 22 2000

Keywords

Examples

			a(50) = T(5,4) = 5^2+5^1 = 30
		

Crossrefs

Rows include A010054 (apart from initial term), A007395 and A048645 (offset). Subsequent rows are sums of two powers of a given number and also rewritings of A052216 from a particular base to base 10. Columns include A007395, A000027, A005843, A002522, A002378, A001105, A001093, A034262, A011379, A033431, A002523.

Formula

T(n, k) = n^A025581(k)+n^A002262(k)

A119536 a(n) = 3*n^3 + 3*n.

Original entry on oeis.org

0, 6, 30, 90, 204, 390, 666, 1050, 1560, 2214, 3030, 4026, 5220, 6630, 8274, 10170, 12336, 14790, 17550, 20634, 24060, 27846, 32010, 36570, 41544, 46950, 52806, 59130, 65940, 73254, 81090, 89466, 98400, 107910, 118014, 128730, 140076, 152070
Offset: 0

Views

Author

Zerinvary Lajos, May 28 2006

Keywords

Programs

  • Maple
    [seq (3*n^3+3*n,n=0..60)];
  • Mathematica
    Table[3n^3+3n,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,6,30,90},40] (* Harvey P. Dale, Mar 19 2013 *)

Formula

a(n) = 3*A034262(n) = 6*A006003(n). - J. M. Bergot, Apr 16 2012
a(0)=0, a(1)=6, a(2)=30, a(3)=90, a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Mar 19 2013

A188542 Number of primes between n^3-n and n^3+n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 2, 3, 2, 3, 2, 4, 4, 4, 3, 5, 5, 4, 4, 7, 4, 4, 8, 7, 6, 5, 6, 5, 4, 6, 6, 5, 6, 9, 5, 5, 5, 7, 9, 7, 5, 7, 12, 8, 8, 12, 7, 8, 13, 10, 10, 9, 10, 7, 11, 11, 11, 6, 5, 11, 13, 12, 8, 8, 14, 9, 5, 7, 5, 14, 12, 13, 8, 11, 15, 15, 12, 11, 5, 11, 17, 14, 15, 15, 12, 15, 14, 16, 14, 17, 13, 15, 15, 12, 6, 17, 16, 14
Offset: 1

Views

Author

Keywords

Comments

We include the end points in the range; this affects the value only for n=1.
Conjecture: the sequence contains no 0's. Verified up to n = 100000.

Crossrefs

Programs

  • PARI
    vector(100,m,sum(k=m^3-m,m^3+m,isprime(k)))
Previous Showing 31-37 of 37 results.