cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 352 results. Next

A327159 Size of the cycle containing n in the map x -> usigma(x)-x or 0 if n is not a member of any finite cycle. Here usigma is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2019

Keywords

Examples

			Because A034460(6) = 6, a(6) = 1.
Because A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, a(30) = a(42) = a(54) = 3.
Because A034460(90) = 90, a(90) = 1. Because A034460(78) = 90, a(78) = 0, as even though 78 ends into a cycle of one, it itself is not a part of that cycle.
		

Crossrefs

Cf. A002827 (positions of ones), A063991 (of 2's), A319902 (of 4's), A097024 (of 5's), A319917 (of 6's), A319937 (of 10's), A097030 (of 14's), A327157 (of all nonzero terms).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 0
    cycleL[k_] := Module[{nL=NestWhileList[a034460, k, UnsameQ, All]}, If[k==Last[nL], Length[nL]-1, 0]]
    a327159[n_] := Map[cycleL, Range[n]]
    a327159[120] (* Hartmut F. W. Hoft, Feb 04 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A327159(n,orgn=n,xs=Set([])) = if(1==n,0,if(vecsearch(xs,n), if(n==orgn,length(xs),0), xs = setunion([n],xs); A327159(A034460(n),orgn,xs)));

A348505 a(n) = usigma(n) / gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 3, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 3, 26, 1, 7, 5, 1, 1, 1, 11, 1, 1, 1, 50, 1, 1, 1, 3, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 7, 1, 3, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 6, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1, 1, 5, 1, 1, 1, 3, 1, 10, 1, 5, 1, 1, 1, 11, 1, 50, 10, 130
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 6 != 3*10 = a(8) * a(9).

Crossrefs

Cf. A000203, A005117, A034448, A048146, A063880, A348503, A348504, A348506 (positions of ones).
Cf. also A344697, A348049.

Programs

  • Mathematica
    f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := (usigma = Times @@ f1 @@@ (fct = FactorInteger[n])) / GCD[usigma, Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348505(n) = { my(u=A034448(n)); (u/gcd(u, sigma(n))); };

Formula

a(n) = A034448(n) / A348503(n) = A034448(n) / gcd(A000203(n), A034448(n)).

A348947 a(n) = A348944(n) / gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 23, 1, 1, 1, 1, 46, 1, 1, 1, 97, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 23, 1, 6, 1, 1, 1, 1, 1, 1, 1, 397, 1, 1, 1, 1, 1, 1, 1, 87, 1, 1, 1, 1, 1, 1, 1, 49, 169, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 46, 1, 1, 1, 227
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

Numerator of ratio A348944(n) / A000203(n).
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 97 <> 1 = a(4)*a(9).

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := (s = (Times @@ f2 @@@ (f = FactorInteger[n]) + Times @@ f3 @@@ f) / 2) / GCD[Times @@ f1 @@@ f, s]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
    A348947(n) = { my(u=A348944(n)); (u/gcd(sigma(n),u)); };

Formula

a(n) = A348944(n) / A348946(n) = A348944(n) / gcd(A000203(n), A348944(n)).

A348948 a(n) = sigma(n) / gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 20, 1, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 20, 1, 5, 1, 1, 1, 1, 1, 1, 1, 127, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 31, 121, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 217
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

Denominator of ratio A348944(n) / A000203(n).
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 91 <> 1 = a(4)*a(9).

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := (s = Times @@ f1 @@@ (f = FactorInteger[n])) / GCD[s, (Times @@ f2 @@@ f + Times @@ f3 @@@ f) / 2]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
    A348948(n) = { my(s=sigma(n)); (s/gcd(s,A348944(n))); };

Formula

a(n) = A000203(n) / A348946(n) = A000203(n) / gcd(A000203(n), A348944(n)).

A348996 a(n) = usigma(A276086(n)), where usigma (A034448) is multiplicative with a(p^e) = (p^e)+1, and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 3, 4, 12, 10, 30, 6, 18, 24, 72, 60, 180, 26, 78, 104, 312, 260, 780, 126, 378, 504, 1512, 1260, 3780, 626, 1878, 2504, 7512, 6260, 18780, 8, 24, 32, 96, 80, 240, 48, 144, 192, 576, 480, 1440, 208, 624, 832, 2496, 2080, 6240, 1008, 3024, 4032, 12096, 10080, 30240, 5008, 15024, 20032, 60096, 50080, 150240, 50, 150
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A348996(n) = { my(m=1, p=2); while(n, if(n%p, m *= (1+(p^(n%p)))); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A034448(A276086(n)).

A348997 a(n) = A348733(A276086(n)), where A348733(n) = gcd(A003959(n), A034448(n)), and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 3, 4, 12, 2, 6, 6, 18, 24, 72, 12, 36, 2, 6, 8, 24, 4, 12, 18, 54, 72, 216, 36, 108, 2, 6, 8, 24, 4, 12, 8, 24, 32, 96, 16, 48, 48, 144, 192, 576, 96, 288, 16, 48, 64, 192, 32, 96, 144, 432, 576, 1728, 288, 864, 16, 48, 64, 192, 32, 96, 2, 6, 8, 24, 4, 12, 12, 36, 48, 144, 24, 72, 4, 12, 16, 48, 8, 24, 36, 108, 144
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Cf. also A346471 for similar construction. (Compare the scatter plots).

Programs

  • PARI
    A348997(n) = { my(m1=1, m2=1, p=2); while(n, if(n%p, m1 *= ((1+p)^(n%p)); m2 *= (1+(p^(n%p)))); n = n\p; p = nextprime(1+p)); gcd(m1, m2); };

Formula

a(n) = A348733(A276086(n)) = gcd(A348949(n), A348996(n)).

A379513 Numerators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 4, 19, 107, 39, 61, 259, 817, 853, 97, 301, 307, 2209, 187, 2279, 39583, 121129, 122557, 124699, 126127, 509863, 171541, 173921, 526523, 6930479, 6983519, 7063079, 7118771, 7193027, 802663, 405199, 13495327, 1131701, 30726097, 123670153, 622026437, 11910394103
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 107/60, 39/20, 61/30, 259/120, 817/360, 853/360, 97/40, 301/120, 307/120, ...
		

Crossrefs

Cf. A034448, A064609, A370898, A379514 (denominators), A379515.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A034448(k)).
a(n)/A379514(n) = B * log(n) + D + O(log(n)^(5/3) * log(log(n))^(4/3) / n), where B = A308041, D = B * (gamma + A1 - A2), gamma = A001620, A1 = Sum_{p prime} ((p*C(p)*log(p)/(p-1)) * Sum_{k>=1} (k/(p^k*(p^(k+1)+1)))), A2 = Sum_{p prime} ((C(p)*log(p)/p^2) * Sum_{k>=0} (1/(p^k*(p^(k+1)+1)))), and C(p) = 1 - (p/(p-1)) * Sum_{k>=1} (1/(p^k*(p^(k+1)+1))) (Sita Ramaiah and Suryanarayana, 1980).

A379514 Denominators of the partial sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 3, 12, 60, 20, 30, 120, 360, 360, 40, 120, 120, 840, 70, 840, 14280, 42840, 42840, 42840, 42840, 171360, 57120, 57120, 171360, 2227680, 2227680, 2227680, 2227680, 2227680, 247520, 123760, 4084080, 340340, 9189180, 36756720, 183783600, 3491888400, 3491888400
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Crossrefs

Cf. A034448, A064609, A370898, A379513 (numerators), A379516.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[1/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / usigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A034448(k)).

A387418 Numbers k such that the odd part of (1+k) divides (1 + odd part of A034448(k)), where A034448 is unitary sigma (usigma).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 1791, 2047, 2431, 4095, 8191, 14335, 14847, 16383, 27391, 32767, 44031, 57855, 65535, 114687, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1632255, 2056191, 2097151, 2744319, 4194303, 6815743, 8388607, 8781823, 8978431, 12058623, 16777215, 19922943, 24068095
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. The initial 1 is probably the only term that is not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A002827, A004767, A034448.
For similar sequences, see A336700, A387410, A387415, A387419.

Programs

A064012 usigma(usigma(n))=3*n where usigma(n) is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

10, 30, 288, 660, 720, 2146560
Offset: 1

Views

Author

Felice Russo, Sep 07 2001

Keywords

Comments

Is this sequence finite?
18 is the only known integer usigma(usigma(n)) = kn for some integer k >= 4 (no other one <= 2^30). - Tomohiro Yamada, Apr 22 2017
a(7) > 2.85*10^11, if it exists. The same bound holds also for any n > 18 such usigma(usigma(n)) = k*n for some integer k >= 4. - Giovanni Resta, Apr 10 2019

Examples

			10 belongs to the sequence because usigma(usigma(10)) = 30 = 3*10.
		

Crossrefs

Extensions

One more term from Naohiro Nomoto, Oct 21 2001
No other terms < 1070000000, Jud McCranie, Oct 28 2001
Previous Showing 31-40 of 352 results. Next