cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 352 results. Next

A348504 a(n) = sigma(n) / gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 10, 7, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 10, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 13, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 21, 1, 57
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 13 != 5*13 = a(8) * a(9).

Crossrefs

Cf. A000203, A005117 (positions of ones), A034448, A048146, A348503, A348505.
Differs from A344696 for the first time at n=72, where a(72) = 13, while A344696(72) = 65. Cf. also A348048.

Programs

  • Mathematica
    f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := (sigma = Times @@ f2 @@@ (fct = FactorInteger[n])) / GCD[sigma, Times @@ f1 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348504(n) = { my(u=sigma(n)); (u/gcd(u, A034448(n))); };

Formula

a(n) = A000203(n) / A348503(n) = A000203(n) / gcd(A000203(n), A034448(n)).

A348506 Numbers k such that sigma(k) is a multiple of usigma(k), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

Conjectured to be the union of A005117 and A063880.

Crossrefs

Positions of ones in A348505.
Cf. A005117 and A063880.

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    isA348506(n) = !(sigma(n)%A034448(n));

A348732 a(n) = A003959(n) - A034448(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A034448 (usigma) is multiplicative with a(p^e) = (p^e)+1.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 18, 6, 0, 0, 16, 0, 0, 0, 64, 0, 18, 0, 24, 0, 0, 0, 72, 10, 0, 36, 32, 0, 0, 0, 210, 0, 0, 0, 94, 0, 0, 0, 108, 0, 0, 0, 48, 36, 0, 0, 256, 14, 30, 0, 56, 0, 108, 0, 144, 0, 0, 0, 96, 0, 0, 48, 664, 0, 0, 0, 72, 0, 0, 0, 342, 0, 0, 40, 80, 0, 0, 0, 384, 174, 0, 0, 128, 0, 0, 0, 216, 0, 108
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2021

Keywords

Crossrefs

Cf. A003959, A005117 (positions of zeros), A034448, A034460, A048146, A348029, A348507.

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Oct 31 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348732(n) = (A003959(n)-A034448(n));

Formula

a(n) = A003959(n) - A034448(n).
a(n) = A348507(n) - A034460(n).
a(n) = A048146(n) + A348029(n).

A349000 a(n) = A323166(A276086(n)), where A323166(n) = gcd(n, usigma(n)), usigma (A034448) is multiplicative with a(p^e) = (p^e)+1, and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 1, 1, 6, 1, 6, 1, 2, 3, 6, 15, 90, 1, 2, 1, 6, 5, 30, 1, 2, 3, 6, 45, 90, 1, 2, 1, 6, 5, 30, 1, 2, 1, 6, 1, 6, 1, 2, 3, 6, 15, 90, 1, 2, 1, 6, 5, 30, 7, 14, 21, 42, 315, 630, 1, 2, 1, 6, 5, 30, 1, 2, 1, 6, 1, 6, 5, 10, 15, 30, 15, 90, 25, 50, 25, 150, 25, 150, 175, 350, 525, 1050, 7875, 15750, 25, 50, 25, 150, 125, 750
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A349000(n) = { my(m1=1, m2=1, p=2, u); while(n, if(n%p, u = p^(n%p); m1 *= u; m2 *= (1+u)); n = n\p; p = nextprime(1+p)); gcd(m1,m2); };

Formula

a(n) = A323166(A276086(n)) = gcd(A276086(n), A348996(n)).

A379515 Numerators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 2, 11, 43, 53, 4, 37, 293, 329, 103, 113, 107, 809, 129, 809, 12913, 41119, 39691, 41833, 8081, 33395, 32443, 33871, 10973, 148361, 48275, 7149, 34861, 108119, 319937, 164941, 1761311, 112361, 662011, 5405483, 26502319, 516671461, 508357441, 3620857237, 3556192637
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 293/360, 329/360, 103/120, 113/120, 107/120, ...
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Numerator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).
a(n)/A379516(n) = E * log(n) + F + O(log(n)^(5/3) * log(log(n))^(4/3) / n^u), where u > 0, E = A308041 * (2/(A323482 + 1/2) - 1) = 0.10259754363391420806..., and F is a constant.

A379516 Denominators of the partial alternating sums of the reciprocals of the sum of unitary divisors function (A034448).

Original entry on oeis.org

1, 3, 12, 60, 60, 5, 40, 360, 360, 120, 120, 120, 840, 140, 840, 14280, 42840, 42840, 42840, 8568, 34272, 34272, 34272, 11424, 148512, 49504, 7072, 35360, 106080, 318240, 159120, 1750320, 109395, 656370, 5250960, 26254800, 498841200, 498841200, 3491888400, 3491888400
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2024

Keywords

Crossrefs

Cf. A034448, A064609, A370898, A379514, A379515 (numerators).

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; Denominator[Accumulate[Table[(-1)^(n+1)/usigma[n], {n, 1, 50}]]]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / usigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A034448(k)).

A063845 a(n) = sigma(usigma(n)), where usigma(n) is the sum of unitary divisors of n (A034448) and sigma(n) is the sum of the divisors (A000203).

Original entry on oeis.org

1, 4, 7, 6, 12, 28, 15, 13, 18, 39, 28, 42, 24, 60, 60, 18, 39, 72, 42, 72, 63, 91, 60, 91, 42, 96, 56, 90, 72, 195, 63, 48, 124, 120, 124, 93, 60, 168, 120, 120, 96, 252, 84, 168, 168, 195, 124, 126, 93, 168, 195, 144, 120, 224, 195, 195, 186
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2001

Keywords

Programs

  • Mathematica
    usigma[n_] := DivisorSum[n, Boole[CoprimeQ[#, n/#]]*#& ]; a[n_] := DivisorSigma[1, usigma[n]]; Array[a, 60] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    usigma(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) { for (n=1, 1000, write("b063845.txt", n, " ", sigma(usigma(n))) ) } \\ Harry J. Smith, Sep 01 2009

Formula

a(n) = A000203(A034448(n)). - Michel Marcus, Dec 02 2015

A064212 a(n) = sigma(n) + usigma(n) = A000203(n) + A034448(n).

Original entry on oeis.org

2, 6, 8, 12, 12, 24, 16, 24, 23, 36, 24, 48, 28, 48, 48, 48, 36, 69, 40, 72, 64, 72, 48, 96, 57, 84, 68, 96, 60, 144, 64, 96, 96, 108, 96, 141, 76, 120, 112, 144, 84, 192, 88, 144, 138, 144, 96, 192, 107, 171, 144, 168, 108, 204, 144, 192, 160
Offset: 1

Views

Author

N. J. A. Sloane, Oct 31 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := p^e + 1; a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) + Times @@ f2 @@@ fct; a[1] = 2; Array[a, 100] (* Amiram Eldar, Apr 01 2024 *)
  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    { for (n=1, 1000, write("b064212.txt", n, " ", sigma(n) + usigma(n)) ) } \\ Harry J. Smith, Sep 10 2009

Formula

Sum_{k=1..n} a(k) ~ (Pi^2/12)*(1 + 1/zeta(3)) * n^2. - Amiram Eldar, Apr 01 2024

A064992 a(n) = usigma(n+1) - usigma(n), where usigma(n) is the sum of unitary divisors of n (A034448).

Original entry on oeis.org

2, 1, 1, 1, 6, -4, 1, 1, 8, -6, 8, -6, 10, 0, -7, 1, 12, -10, 10, 2, 4, -12, 12, -10, 16, -14, 12, -10, 42, -40, 1, 15, 6, -6, 2, -12, 22, -4, -2, -12, 54, -52, 16, 0, 12, -24, 20, -18, 28, -6, -2, -16, 30, -12, 0, 8, 10, -30, 60, -58, 34, -16, -15, 19, 60, -76, 22, 6, 48, -72, 18, -16, 40
Offset: 1

Views

Author

N. J. A. Sloane, Oct 31 2001

Keywords

Crossrefs

Cf. A034448.

Programs

  • PARI
    usigma(n)= { local(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) } { u=1; for (n=1, 1000, u1=usigma(n + 1); a=u1 - u; u=u1; write("b064992.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009

Formula

a(n) = A034448(n+1) - A034448(n).

A258101 Number x such that usigma(x) = (-1)sigma(x), where usigma(x) is the sum of unitary divisors of x (A034448) and (-1)sigma(x) is defined in A049060 .

Original entry on oeis.org

1, 4, 15867, 21357, 49887, 63468, 69875, 85428, 86387, 149875, 199548, 247475, 271607, 279500, 293944, 318681, 345548, 599500, 637659, 989900, 1086428, 1169091, 1274724, 1897875, 1913571, 2550636, 2665269, 2801880, 2855691
Offset: 1

Views

Author

Paolo P. Lava, May 20 2015

Keywords

Examples

			usigma(1) = (-1)sigma(1) = 1;
usigma(4) =  (-1)sigma(4) = 5;
usigma(15867) = (-1)sigma(15867) = 18480; etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,d,k,n;
    a:=0; for n from 1 to q do a:=divisors(n); d:=0; for k from 1 to nops(a)
    do if gcd(a[k],n/a[k])=1 then d:=d+a[k]; fi; od; a:=ifactors(n)[2]; b:=1;
    for k from 1 to nops(a) do b:=b*(-1+sum(a[k][1]^j,j=1..a[k][2])); od;
    if b=d then print(n); fi; od; end: P(10^9);
  • Mathematica
    aQ[n_] := Module[{f = FactorInteger[n]}, p = f[[;;,1]]; e = f[[;;,2]]; Times@@(p^e+1) == Times@@((p^(e+1)-2*p+1)/(p-1))]; Join[{1}, Select[Range[2, 200000 ], aQ]] (* Amiram Eldar, Jun 23 2019 *)
Previous Showing 51-60 of 352 results. Next