A238777
a(n) = floor((5^n+1)/(2*3^n)).
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 17, 29, 49, 82, 137, 229, 382, 638, 1063, 1772, 2953, 4923, 8205, 13675, 22792, 37987, 63312, 105521, 175868, 293114, 488524, 814207, 1357012, 2261686, 3769478, 6282463, 10470772, 17451288, 29085480
Offset: 1
A266577
Square array read by descending antidiagonals: T(n,k) = ((2^(n+1) + 1)^(k-1) + 1)/2.
Original entry on oeis.org
1, 3, 1, 13, 5, 1, 63, 41, 9, 1, 313, 365, 145, 17, 1, 1563, 3281, 2457, 545, 33, 1, 7813, 29525, 41761, 17969, 2113, 65, 1, 39063, 265721, 709929, 592961, 137313, 8321, 129, 1, 195313, 2391485, 12068785, 19567697, 8925313, 1073345, 33025, 257, 1, 976563, 21523361, 205169337, 645733985, 580145313, 138461441, 8487297, 131585, 513, 1
Offset: 1
The array begins:
1 3 13 63 313
1 5 41 365
1 9 145
1 17
1
Example of the result concerning palindromic numbers:
Take m=2, c=4, 2^(m+1) + 1 = 2^3 + 1 = 9, we choose 3 not necessarily distinct terms from the second row. Let them be 41, 365, 365; then we get 41*365*365*(9^4 - 1) = 35832196000 = 112435534211_9, which is a palindromic number in base 9.
Example of the conjecture: assume n=5 and m=3, then b(5,3)=5^3+1=126. Assume k1=1 and k2=1 and k3=2 (they are three values since m=3). Assume s=3; then we have the calculation ((126+126^2+126^3+126^4+1)/5)^2*(126^2+126^4+126^6+126^8+1)/5*(126^3-1) which is equal to: 32807046133985032885720309126001 and this number has the base-126 expansion (1,3,7,12,19,25,31,34,37,37,37,34,31,25,19,12,7,3,1)_126 which is a palindromic number in base 126.
-
T[n_, k_] := ((2^(n + 1) + 1)^(k - 1) + 1)/2; Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Sep 14 2022 *)
-
tabl(n) = matrix(n, n, i, j, ((2^(i+1)+1)^(j-1)+1)/2); \\ Michel Marcus, Jan 02 2016
A199045
Smallest multiple of 2^n having in decimal representation exactly n digits <= 2.
Original entry on oeis.org
2, 12, 112, 1120, 10112, 101120, 1002112, 10010112, 100101120, 1001011200, 10002010112, 100012122112, 1000121221120, 10001212211200, 100002002010112, 1000000210010112, 10000002100101120, 100000021001011200, 1000000210010112000, 10000000201221210112
Offset: 1
n=3: A050621(3) = 104 = 8 * 13, a(3) = 112 = 8 * 14;
n=4: A050621(4) = 1008 = 16 * 63, a(4) = 1120 = 16 * 70.
A141575
A gap prime-type triangular sequence of coefficients: gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
Original entry on oeis.org
1, 2, 2, 13, 17, 21, 185, 245, 305, 425, 7361, 12833, 18817, 32321, 47873, 215171, 271051, 328691, 449251, 576851, 853171, 12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281, 532365557, 659940697, 793109789, 1076412613
Offset: 1
{1},
{2, 2},
{13, 17, 21},
{185, 245, 305, 425},
{7361, 12833, 18817, 32321, 47873},
{215171, 271051, 328691, 449251, 576851, 853171},
{12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281},
{532365557, 659940697, 793109789, 1076412613, 1382639597, 2065328317, 2442521189, 3270431797},
{40436937953, 68810349217, 102354570337, 185966400481, 293310073697, 587469359713, 778486092257, 1259085279457, 1553019848801},
{7312866926183, 15217609281335, 25813998655559, 56317915837223,
101380456546055, 246072307427783, 351480840333479, 643872497781095,
837435900955463, 1336749872660999}, {512759709537725, 608866569299409,
709085196658213, 922088454409101, 1152233212894709, 1665820807145925,
1950209769575213, 2576571400365309, 2919512658836837, 3667365684348213,
4951533162173037}
-
gap[n_] := Prime[n + 1] - Prime[n]; t[n_, m_] := If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]]; Table[Table[FullSimplify[t[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%]
A191687
Table T(n,k) = ceiling((1/2)*((k+1)^n+(1+(-1)^k)/2)) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 14, 8, 3, 1, 1, 16, 41, 32, 13, 3, 1, 1, 32, 122, 128, 63, 18, 4, 1, 1, 64, 365, 512, 313, 108, 25, 4, 1, 1, 128, 1094, 2048, 1563, 648, 172, 32, 5, 1
Offset: 1
Top left corner:
1, 1, 1, 1, 1,...
1, 1, 2, 2, 3,...
1, 2, 5, 8, 13,...
1, 4,14, 32, 63,...
1, 8,41,128,313,...
T(2,4)=13: there are 13 compositions of even natural numbers into 2 parts <=4
0: (0,0);
2: (0,2), (2,0), (1,1);
4: (0,4), (4,0), (1,3), (3,1), (2,2);
6: (2,4), (4,2), (3,3);
8: (4,4).
-
Table[Table[Ceiling[1/2*((k+1)^n+(1+(-1)^k)/2)],{n,0,9},{k,0,9}]]
Comments