cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 145 results. Next

A103446 Unlabeled analog of A025168.

Original entry on oeis.org

0, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812
Offset: 0

Views

Author

Thomas Wieder, Feb 06 2005; revised Feb 20 2006

Keywords

Comments

Or, if the initial 0 is omitted, this is the binomial transform of the partition numbers p(1), p(2), ... = 1, 2, 3, 5, 7, 11, 15, 22, 30, ... (A000041 without the initial 1).
The most precise definition of this sequence is the Maple combstruct command given below. See the first Wieder link for further details.
Sequence appears to have a rational o.g.f. - Ralf Stephan, May 18 2007
For n>0, row sums of triangle A137151. - Gary W. Adamson, Jan 23 2008
a(n) = A218482(n) for n>=1; see A218482 for more formulas.

Examples

			Let {} denote a set, [] a list and Z an unlabeled element.
a(3) = 8 because we have {[[Z]],[[Z]],[[Z]]}, {[[Z],[Z]],[[Z]]}, {[[Z],[Z],[Z]]}, {[[Z],[Z,Z]]}, {[[Z,Z],[Z]]}, {[[Z,Z]],[[Z]]}, {[[Z]],[[Z,Z]]}, {[[Z,Z,Z]]}.
		

Crossrefs

Programs

  • Maple
    with(combstruct); SubSetSeqU := [T,{T=Subst(U,S),S=Set(U,card>=1),U=Sequence(Z,card>=1)},unlabeled]; [seq(count(SubSetSeqU, size=n), n=0..30)];
    allstructs(SubSetSeq,size=3); # to get the structures for n=3 - this output is shown in the example lines.
  • Mathematica
    Flatten[{0, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
  • PARI
    {a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x+x*O(x^n))^m/m)),n))} \\ Paul D. Hanna, Apr 21 2010
    
  • PARI
    {a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,x^m/m*sum(k=1,m,binomial(m,k)*sigma(k)))+x*O(x^n)),n))} \\ Paul D. Hanna, Feb 04 2012
    
  • PARI
    Vec(1/eta('x/(1-'x)+O('x^66))) \\ Joerg Arndt, Jul 30 2011

Formula

O.g.f.: exp( Sum_{n>=1} sigma(n)*x^n/(1-x)^n/n ) - 1. - Paul D. Hanna, Apr 21 2010
O.g.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k)*sigma(k) ) - 1. - Paul D. Hanna, Feb 04 2012
O.g.f. P(x/(1-x)), where P(x) is the o.g.f. for number of partitions (A000041) a(n)=sum_{k=1,n} ( binomial(n-1,k-1)*A000041(k)). - Vladimir Kruchinin, Aug 10 2010
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015

Extensions

I can confirm that the terms shown are the binomial transform of the partition sequence 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... (A000041 without the a(0) term). - N. J. A. Sloane, May 18 2007

A284001 a(n) = A005361(A283477(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 6, 1, 2, 4, 6, 8, 12, 18, 24, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 32, 48, 72, 96, 108, 144, 192, 240, 162, 216, 288, 360, 384, 480, 600, 720, 1, 2, 4, 6, 8, 12, 18, 24, 16, 24, 36, 48, 54, 72, 96, 120, 32, 48, 72, 96, 108, 144, 192, 240, 162, 216, 288, 360, 384, 480
Offset: 0

Views

Author

Antti Karttunen, Mar 18 2017

Keywords

Comments

a(n) is the product of elements of the multiset that covers an initial interval of positive integers with multiplicities equal to the parts of the n-th composition in standard order (graded reverse-lexicographic, A066099). This composition is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. For example, the 13th composition is (1,2,1) giving the multiset {1,2,2,3} with product 12, so a(13) = 12. - Gus Wiseman, Apr 26 2020

Crossrefs

Row products of A095684.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Weighted sum is A029931.
- Necklaces are A065609.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon words are A275692.
- Distinct parts are counted by A334028.

Programs

  • Mathematica
    Table[Times @@ FactorInteger[#][[All, -1]] &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]]], {n, 0, 93}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A005361(n) = factorback(factor(n)[, 2]); \\ From A005361
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A283477(n) = A108951(A019565(n));
    A284001(n) = A005361(A283477(n));
    
  • Scheme
    (define (A284001 n) (A005361 (A283477 n)))

Formula

a(n) = A005361(A283477(n)).
a(n) = A003963(A057335(n)). - Gus Wiseman, Apr 26 2020
a(n) = A284005(A053645(n)) for n > 0 with a(0) = 1. - Mikhail Kurkov, Jun 05 2021 [verification needed]

A316653 Number of series-reduced rooted identity trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 1, 6, 58, 774, 13171, 272700, 6655962, 187172762, 5959665653, 211947272186, 8327259067439, 358211528524432, 16744766791743136, 845195057333580332, 45814333121920927067, 2654330505021077873594, 163687811930206581162063, 10705203621191765328300832
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(3) = 6 trees are (1(12)), (2(12)), (1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
  • PARI
    \\ here R(n,2) is A031148.
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, WeighT(concat(v,[0]))[n])); v}
    seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 14 2018

A335455 Number of compositions of n with some part appearing more than twice.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 11, 30, 69, 142, 334, 740, 1526, 3273, 6840, 14251, 29029, 59729, 122009, 248070, 500649, 1012570, 2040238, 4107008, 8257466, 16562283, 33229788, 66621205, 133478437, 267326999, 535146239, 1071183438, 2143604313, 4289194948, 8581463248
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2020

Keywords

Comments

Also the number of compositions of n matching the pattern (1,1,1).
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(3) = 1 through a(6) = 11 compositions:
  (111)  (1111)  (1112)   (222)
                 (1121)   (1113)
                 (1211)   (1131)
                 (2111)   (1311)
                 (11111)  (3111)
                          (11112)
                          (11121)
                          (11211)
                          (12111)
                          (21111)
                          (111111)
		

Crossrefs

The case of partitions is A000726.
The avoiding version is A232432.
The (1,1)-matching version is A261982.
The version for patterns is A335508.
The version for prime indices is A335510.
These compositions are ranked by A335512.
Compositions are counted by A011782.
Combinatory separations are counted by A269134.
Normal patterns matched by compositions are counted by A335456.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Max@@Length/@Split[Sort[#]]>=3&]],{n,0,10}]

Formula

a(n > 0) = 2^(n - 1) - A232432(n).

A335466 Numbers k such that the k-th composition in standard order (A066099) matches (1,2,1).

Original entry on oeis.org

13, 25, 27, 29, 45, 49, 51, 53, 54, 55, 57, 59, 61, 77, 82, 89, 91, 93, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 115, 117, 118, 119, 121, 123, 125, 141, 153, 155, 157, 162, 165, 166, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189, 193, 195
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  45: (2,1,2,1)
  49: (1,4,1)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  77: (3,1,2,1)
  82: (2,3,2)
		

Crossrefs

The complement A335467 is the avoiding version.
The (2,1,2)-matching version is A335468.
These compositions are counted by A335470.
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134 and ranked by A334030.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,y_,_,x_,_}/;x
    				

A335509 Number of patterns of length n matching the pattern (1,1,2).

Original entry on oeis.org

0, 0, 0, 1, 15, 181, 2163, 27133, 364395, 5272861, 82289163, 1383131773, 24978057195, 483269202781, 9987505786443, 219821796033853, 5137810967933355, 127169580176271901, 3324712113052429323, 91585136315240091133, 2652142325158529483115, 80562824634615270041821
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

Also the number of (1,2,1)-matching patterns of length n.
Also the number of (2,1,2)-matching patterns of length n.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 15 patterns:
  (1,1,2)  (1,1,1,2)
           (1,1,2,1)
           (1,1,2,2)
           (1,1,2,3)
           (1,1,3,2)
           (1,2,1,2)
           (1,2,1,3)
           (1,2,2,3)
           (1,3,1,2)
           (2,1,1,2)
           (2,1,1,3)
           (2,1,2,3)
           (2,2,1,3)
           (2,2,3,1)
           (3,1,1,2)
		

Crossrefs

The complement A001710 is the avoiding version.
Compositions matching this pattern are counted by A335470 and ranked by A335476.
Permutations of prime indices matching this pattern are counted by A335446.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matching (1,2,3) are counted by A335515.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,x_,_,y_,_}/;x
    				
  • PARI
    seq(n)={Vec(serlaplace(1/(2-exp(x + O(x*x^n))) - (2-2*x+x^2)/(2*(1-x)^2)), -(n+1))} \\ Andrew Howroyd, Dec 31 2020

Formula

E.g.f.: 1/(2-exp(x)) - (2-2*x+x^2)/(2*(1-x)^2). - Andrew Howroyd, Dec 31 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 31 2020

A382429 Number of normal multiset partitions of weight n into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 13, 26, 57, 113, 283, 854, 2401, 6998, 24072, 85061, 308956, 1190518, 4770078, 19949106, 87059592
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(6) = 13 partitions:
  {1} {12}   {123}     {1234}       {12345}         {123456}
      {1}{1} {3}{12}   {12}{12}     {24}{123}       {123}{123}
             {1}{1}{1} {14}{23}     {34}{124}       {125}{134}
                       {3}{3}{12}   {3}{12}{12}     {135}{234}
                       {1}{1}{1}{1} {5}{14}{23}     {145}{235}
                                    {3}{3}{3}{12}   {12}{12}{12}
                                    {1}{1}{1}{1}{1} {14}{14}{23}
                                                    {14}{23}{23}
                                                    {16}{25}{34}
                                                    {3}{3}{12}{12}
                                                    {5}{5}{14}{23}
                                                    {3}{3}{3}{3}{12}
                                                    {1}{1}{1}{1}{1}{1}
The corresponding factorizations:
  2  6    30     210      2310       30030
     2*2  5*6    6*6      21*30      30*30
          2*2*2  14*15    35*42      6*6*6
                 5*5*6    5*6*6      66*70
                 2*2*2*2  5*5*5*6    110*105
                          11*14*15   154*165
                          2*2*2*2*2  5*5*6*6
                                     14*14*15
                                     14*15*15
                                     26*33*35
                                     5*5*5*5*6
                                     11*11*14*15
                                     2*2*2*2*2*2
		

Crossrefs

Without the common sum we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279788.
For common sizes instead of sums we have A317583.
Without strict blocks we have A326518, non-strict blocks A326517.
For a common length instead of sum we have A331638.
For distinct instead of equal block-sums we have A381718.
Factorizations of this type are counted by A382080.
For distinct block-sums and constant blocks we have A382203.
For constant instead of strict blocks we have A382204.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count multiset partitions of prime indices, strict A045778.
A321469 counts multiset partitions with distinct block-sums, ranks A326535.
Normal multiset partitions: A035310, A255906, A304969, A317532.
Set multipartitions: A089259, A116539, A270995, A296119, A318360.
Set multipartitions with distinct sums: A279785, A381806, A381870.
Constant blocks with distinct sums: A381635, A381636, A381716.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],SameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(11) from Robert Price, Mar 30 2025
a(12)-a(20) from Christian Sievers, Apr 06 2025

A320767 Inverse Euler transform applied once to {1,-1,0,0,0,...}, twice to {1,0,0,0,0,...}, or three times to {1,1,1,1,1,...}.

Original entry on oeis.org

1, 1, -2, 1, -1, 2, -3, 4, -5, 8, -13, 18, -25, 40, -62, 90, -135, 210, -324, 492, -750, 1164, -1809, 2786, -4305, 6710, -10460, 16264, -25350, 39650, -62057, 97108, -152145, 238818, -375165, 589520, -927200, 1459960, -2300346, 3626200, -5720274, 9030450
Offset: 0

Views

Author

Gus Wiseman, Oct 20 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    Nest[EulerInvTransform,Array[DiscreteDelta,50,0],2]

A333939 Number of multisets of compositions that can be shuffled together to obtain the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 2, 5, 4, 5, 1, 2, 2, 4, 2, 4, 5, 7, 2, 5, 4, 10, 4, 10, 7, 7, 1, 2, 2, 4, 2, 5, 5, 7, 2, 5, 3, 9, 5, 13, 11, 12, 2, 5, 5, 10, 5, 11, 13, 18, 4, 10, 9, 20, 7, 18, 12, 11, 1, 2, 2, 4, 2, 5, 5, 7, 2, 4, 4, 11, 5, 14, 11, 12, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2020

Keywords

Comments

Number of ways to deal out the k-th composition in standard order to form a multiset of hands.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The dealings for n = 1, 3, 7, 11, 13, 23, 43:
  (1)  (11)    (111)      (211)      (121)      (2111)        (2211)
       (1)(1)  (1)(11)    (1)(21)    (1)(12)    (11)(21)      (11)(22)
               (1)(1)(1)  (2)(11)    (1)(21)    (1)(211)      (1)(221)
                          (1)(1)(2)  (2)(11)    (2)(111)      (21)(21)
                                     (1)(1)(2)  (1)(1)(21)    (2)(211)
                                                (1)(2)(11)    (1)(1)(22)
                                                (1)(1)(1)(2)  (1)(2)(21)
                                                              (2)(2)(11)
                                                              (1)(1)(2)(2)
		

Crossrefs

Multisets of compositions are counted by A034691.
Combinatory separations of normal multisets are counted by A269134.
Dealings with total sum n are counted by A292884.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon words are A275692.
- Co-Lyndon words are A326774.
- Aperiodic compositions are A328594.
- Length of Lyndon factorization is A329312.
- Distinct rotations are counted by A333632.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Length of co-Lyndon factorization is A334029.
- Combinatory separations are A334030.

Programs

  • Mathematica
    nn=100;
    comps[0]:={{}};comps[n_]:=Join@@Table[Prepend[#,i]&/@comps[n-i],{i,n}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
    Table[Length[dealings[stc[n]]],{n,0,nn}]

Formula

For n > 0, Sum_{k = 2^(n-1)..2^n-1} a(k) = A292884(n).

A382428 Number of normal multiset partitions of weight n into sets with distinct sizes.

Original entry on oeis.org

1, 1, 1, 6, 8, 35, 292, 673, 2818, 16956, 219772, 636748, 3768505, 20309534, 183403268, 3227600747, 12272598308, 81353466578, 561187259734, 4416808925866, 50303004612136, 1238783066956740, 5566249468690291, 44970939483601100, 330144217684933896, 3131452652308459402
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(4) = 8 multiset partitions:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}
                  {{1},{1,2}}  {{1},{1,2,3}}
                  {{1},{2,3}}  {{1},{2,3,4}}
                  {{2},{1,2}}  {{2},{1,2,3}}
                  {{2},{1,3}}  {{2},{1,3,4}}
                  {{3},{1,2}}  {{3},{1,2,3}}
                               {{3},{1,2,4}}
                               {{4},{1,2,3}}
		

Crossrefs

For distinct sums instead of sizes we have A116539, see A050326.
Without distinct lengths we have A116540 (normal set multipartitions).
Without strict blocks we have A326517, for sum instead of size A326519.
For equal instead of distinct sizes we have A331638.
Twice-partitions of this type are counted by A358830.
For distinct sums instead of sizes we have A381718.
For equal instead of distinct sizes we have A382429.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Length/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]
  • PARI
    R(n, k)={Vec(prod(j=1, n, 1 + binomial(k, j)*x^j + O(x*x^n)))}
    seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Mar 31 2025

Extensions

a(10) onwards from Andrew Howroyd, Mar 31 2025
Previous Showing 51-60 of 145 results. Next