A364606 Numbers k such that the average digit of 2^k is an integer.
0, 1, 2, 3, 6, 13, 16, 26, 46, 51, 56, 73, 122, 141, 166, 313, 383
Offset: 1
Examples
2^26 = 67108864 is an 8-digit number; its average digit is (6+7+1+0+8+8+6+4)/8 = 40/8 = 5, an integer, so 26 is a term.
Programs
-
Maple
q:= n-> (l-> irem(add(i, i=l), nops(l))=0)(convert(2^n, base, 10)): select(q, [$0..400])[]; # Alois P. Heinz, Jul 29 2023
-
Mathematica
Select[Range[0, 2^12], IntegerQ@ Mean@ IntegerDigits[2^#] &] (* Michael De Vlieger, Jul 29 2023 *)
-
PARI
isok(k) = my(d=digits(2^k)); !(vecsum(d) % #d); \\ Michel Marcus, Jul 29 2023
-
Python
from itertools import count, islice from gmpy2 import mpz, digits def A364606_gen(startvalue=0): # generator of terms >= startvalue m = mpz(1)<
A364606_list = list(islice(A364606_gen(),10)) # Chai Wah Wu, Jul 31 2023
Comments