cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A159336 Transform of the finite sequence (1, 0, -1) by the T_{1,0} transformation (see link).

Original entry on oeis.org

1, 2, 4, 11, 26, 60, 139, 323, 751, 1746, 4059, 9436, 21936, 50995, 118549, 275593, 640676, 1489391, 3462414, 8049136, 18711971, 43500055, 101125359, 235087938, 546513151, 1270488936, 2953528444, 6866120611, 15961793881, 37106668865
Offset: 0

Views

Author

Richard Choulet, Apr 11 2009

Keywords

Crossrefs

Cf. A034943.

Programs

  • Magma
    I:=[4, 11, 26]; [1,2] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Jun 25 2018
  • Mathematica
    Join[{1, 2}, LinearRecurrence[{3, -2, 1}, {4, 11, 26}, 49]] (* G. C. Greubel, Jun 25 2018 *)
  • PARI
    z='z+O('z^50); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2)+(z/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 25 2018
    

Formula

O.g.f.: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2)+(z/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 5, with a(0)=1, a(1)=2, a(2)=4, a(3)=11, a(4)=26.

A373904 a(n) = Sum_{k=0..floor(n/2)} binomial(n+4*k,n-2*k).

Original entry on oeis.org

1, 1, 2, 8, 30, 98, 303, 937, 2936, 9260, 29209, 91999, 289547, 911255, 2868341, 9029425, 28424456, 89478064, 281667368, 886657848, 2791106585, 8786123349, 27657838272, 87064092870, 274068969337, 862741412709, 2715822822365, 8549136056237, 26911817257385
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+4*k,n-2*k));

Formula

a(n) = 6*a(n-1) - 14*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: 1/(1 - x - x^2/(1 - x)^5).

A165521 The number of 4321-avoiding separable permutations of length n.

Original entry on oeis.org

1, 1, 2, 6, 21, 73, 243, 785, 2504, 7968, 25389, 81033, 258873, 827263, 2643616, 8447300, 26990489, 86236655, 275531223, 880341121, 2812760102, 8987010878, 28714292671, 91744697633, 293132350135, 936583428475, 2992465580300
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Examples

			For n=6, there are 394 separable permutations; 243 of them avoid 4321.
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7))); // G. C. Greubel, Oct 21 2018
  • Mathematica
    CoefficientList[Series[(1 - x)^3*(1 -3*x +2*x^2 -x^3)/(1 -7*x +19*x^2 - 28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7), {x, 0, 50}], x] (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7)) \\ G. C. Greubel, Oct 21 2018
    

Formula

G.f.: (1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7).
The growth rate (limit of the n-th root of a(n)) is approximately 3.19508.

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 09 2015

A165522 The number of 54321-avoiding separable permutations of length n.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 368, 1488, 5831, 22311, 84223, 316181, 1185884, 4452567, 16742230, 63025805, 237423928, 894681874, 3371727204, 12706639594, 47884046357, 180440982667, 679939553548, 2562134671440, 9654584875285, 36380338185856, 137088669193146
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Examples

			For n=6, there are 394 separable permutations; 368 of them avoid 54321.
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3 + 23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16-273*x^15+957*x^14- 2697*x^13+6189*x^12 -11622*x^11+17876*x^10-22474*x^9+22992*x^8-18999*x^7 +12536*x^6-6488*x^5 +2564*x^4-743*x^3+148*x^2-18*x+1))); // G. C. Greubel, Oct 21 2018
  • Mathematica
    CoefficientList[Series[(1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3 + 23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16-273*x^15+957*x^14- 2697*x^13+6189*x^12-11622*x^11+17876*x^10-22474*x^9+22992*x^8-18999*x^7 +12536*x^6-6488*x^5+2564*x^4-743*x^3+148*x^2-18*x+1), {x,0,50}], x] (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2 -28*x^3+23*x^4-12*x^5+4*x^6-x^7)/(x^18-10*x^17+61*x^16 -273*x^15 +957*x^14 -2697*x^13+6189*x^12-11622*x^11+17876*x^10-22474*x^9 +22992*x^8 -18999*x^7+12536*x^6-6488*x^5+2564*x^4-743*x^3+148*x^2 -18*x+1)) \\ G. C. Greubel, Oct 21 2018
    

Formula

G.f.: (1-x)^4*(1-3*x+2*x^2-x^3)^2*(1-7*x+19*x^2-28*x^3+23*x^4 -12*x^5 +4*x^6-x^7) / (x^18 -10*x^17 +61*x^16 -273*x^15 +957*x^14 -2697*x^13 +6189*x^12 -11622*x^11 +17876*x^10 -22474*x^9 +22992*x^8 -18999*x^7 +12536*x^6 -6488*x^5 +2564*x^4 -743*x^3 +148*x^2 -18*x +1). [typo fixed by Colin Barker, Jul 05 2013]
The growth rate (limit of the n-th root of a(n)) is approximately 3.76823.

A165523 The number of 654321-avoiding separable permutations of length n.

Original entry on oeis.org

1, 1, 2, 6, 22, 90, 393, 1769, 7957, 35133, 151675, 642695, 2689411, 11176469, 46313531, 191837707, 795251170, 3300506324, 13712825121, 57019988099, 237221971144, 987206194720, 4108816936769, 17101813661923, 71181293634767
Offset: 0

Views

Author

Vincent Vatter, Sep 25 2009

Keywords

Examples

			For n=6, there are 394 separable permutations; all but one of them (654321 itself) avoid 654321, so a(6)=393.
		

Crossrefs

Formula

G.f.: ((x^7 - 4*x^6 + 12*x^5 - 23*x^4 + 28*x^3 - 19*x^2 + 7*x - 1)*(x^18 - 10*x^17 + 61*x^16 - 273*x^15 + 957*x^14 - 2697*x^13 + 6189*x^12 - 11622*x^11 + 17876*x^10 - 22474*x^9 + 22992*x^8 - 18999*x^7 + 12536*x^6 - 6488*x^5 + 2564*x^4 - 743*x^3 + 148*x^2 - 18*x + 1)*(x^3 - 2*x^2 + 3*x - 1)^2*(x - 1)^5) / (1 + 63561*x^32 - 294604*x^31 - 378989*x^5 + 656*x^2 - 37*x - 224*x^35 - x^37 + 20*x^36 - 11762*x^33 + 1818*x^34 + 60594*x^4 + 2259800395*x^14 + 13432485*x^28 - 4243006*x^29 - 37986829*x^27 - 1480312985*x^13 + 1190714*x^30 + 3761486169*x^16 - 4128383734*x^17 + 4081387760*x^18 - 7789502*x^7 + 1894854*x^6 - 79043750*x^9 - 7434*x^3 + 200616320*x^10 - 3079970285*x^15 - 3640807867*x^19 + 2934146785*x^20 + 861927311*x^12 - 443695596*x^11 + 26875022*x^8 + 452088473*x^24 + 96347460*x^26 - 839470131*x^23 - 219815232*x^25 - 2137896384*x^21 + 1408787953*x^22). The growth rate (limit of the n-th root of a(n)) is approximately 4.16229.

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 09 2015

A159338 Transform of the finite sequence (1, 0, -1, 0, 1, 0, -1) by the T_{1,0} transformation (see link).

Original entry on oeis.org

1, 2, 4, 11, 27, 61, 140, 327, 761, 1769, 4112, 9559, 22222, 51660, 120095, 279187, 649031, 1508814, 3507567, 8154104, 18955992, 44067335, 102444125, 238153697, 553640176, 1287057259, 2992045122, 6955661024, 16169950087, 37590573335
Offset: 0

Views

Author

Richard Choulet, Apr 11 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[140, 327, 761]; [1, 2, 4, 11, 27, 61] cat [n le 3 select I[n] else 3*Self(n-1) - 2*Self(n-2) + Self(n-3): n in [1..50]]; // G. C. Greubel, Jun 25 2018
  • Maple
    a(0):=1: a(1):=2:a(2):=4: a(3):=11:a(4):=27:a(5):=61:a(6):=140:a(7):=327:a(8):=761:for n from 6 to 31 do a(n+3):=3*a(n+2)-2*a(n+1)+a(n):od:seq(a(i),i=0..31);
  • Mathematica
    Join[{1, 2, 4, 11, 27, 61}, LinearRecurrence[{3, -2, 1}, {140, 327, 761}, 45]] (* G. C. Greubel, Jun 25 2018 *)
  • PARI
    z='z+O('z^50); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4-z^6)+(z/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 25 2018
    

Formula

O.g.f.: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1-z^2+z^4-z^6)+(z/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n >= 9, with a(0)=1, a(1)=2, a(2)=4, a(3)=11, a(4)=27, a(5)=61, a(6)=140, a(7)=327, a(8)=761.

A159339 Transform of A056594 by the T_{1,0} transformation (see link).

Original entry on oeis.org

1, 2, 4, 11, 27, 61, 140, 327, 762, 1770, 4113, 9563, 22233, 51684, 120149, 279314, 649328, 1509503, 3509167, 8157825, 18964644, 44087447, 102490878, 238262386, 553892849, 1287644651, 2993410641, 6958835472, 16177329785, 37607729050
Offset: 0

Views

Author

Richard Choulet, Apr 11 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 2, 4, 11, 27]; [n le 5 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 4*Self(n-3) -2*Self(n-4) +Self(n-5): n in [1..50]]; // G. C. Greubel, Jun 25 2018
  • Maple
    a(0):=1: a(1):=2:a(2):=4: a(3):=11:a(4):=27:for n from 0 to 31 do a(n+5):=3*a(n+4)-3*a(n+3)+4*a(n+2)-2*a(n+1)+a(n):od:seq(a(i),i=0..31);
  • Mathematica
    LinearRecurrence[{3, -3, 4, -2, 1}, {1, 2, 4, 11, 27}, 50] (* G. C. Greubel, Jun 25 2018 *)
  • PARI
    z='z+O('z^50); Vec(((1-z)^2/(1-3*z+2*z^2-z^3))*(1/(1+z^2))+(z/(1-3*z+2*z^2-z^3))) \\ G. C. Greubel, Jun 25 2018
    

Formula

O.g.f.: f(z) = ((1-z)^2/(1-3*z+2*z^2-z^3))*(1/(1+z^2))+(z/(1-3*z+2*z^2-z^3)).
a(n) = 3*a(n-1) - 3*a(n-2) + 4*a(n-3) - 2*a(n-4) + a(n-5) for n >= 5, with a(0)=1, a(1)=2, a(2)=4, a(3)=11, a(4)=27.

A181984 INVERT transform of A028310.

Original entry on oeis.org

1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545, 7459895657, 17342153393, 40315615410, 93722435101
Offset: 0

Views

Author

Michael Somos, Apr 04 2012

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 12*x^3 + 28*x^4 + 65*x^5 + 151*x^6 + 351*x^7 + 816*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^2)/(1-3*x+2*x^2-x^3))); // G. C. Greubel, Aug 12 2018
  • Mathematica
    CoefficientList[Series[(1-x+x^2)/(1-3*x+2*x^2-x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    {a(n) = if( n<0, n = -1-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))}
    
  • PARI
    x='x+O('x^50); Vec((1-x+x^2)/(1-3*x+2*x^2-x^3)) \\ G. C. Greubel, Aug 12 2018
    

Formula

G.f.: (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3).
G.f.: 1 / (1 - 2*x / (1 - x / (2 + x / (1 - 2*x / (1 + x))))).
a(n) = A034943(n + 2) = A185963(-2 - n).
a(n) = 3*a(n-1) + 2*a(n-2) - a(n-3).
a(n) satisfies 1 = f(a(n-2), a(n-1), a(n)) where f(u, v, w) = u^3 - 5*v^3 + w^3 + u*v * (7*v -4*u) + u*w * (3*u + 2*w) + v*w * (11*v - 6*w) - 9*u*v*w.
a(n) = A000931(3*n + 6). - Michael Somos, Sep 18 2012

A233581 a(n) = 2*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 1, a(1) = 0, a(2) = -1.

Original entry on oeis.org

1, 0, -1, -1, 1, 4, 4, -3, -14, -15, 9, 49, 56, -26, -171, -208, 71, 595, 769, -176, -2064, -2831, 354, 7137, 10381, -295, -24596, -37926, -2359, 84464, 138079, 20407, -288959, -501060, -114836, 984549, 1812546, 556609, -3339871, -6537023, -2497824, 11275550
Offset: 0

Views

Author

Michael Somos, Dec 14 2013

Keywords

Examples

			G.f. = 1 - x^2 - x^3 + x^4 + 4*x^5 + 4*x^6 - 3*x^7 - 14*x^8 - 15*x^9 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+2*x^2)/(1-2*x+3*x^2-x^3))); // G. C. Greubel, Aug 08 2018
  • Mathematica
    CoefficientList[Series[(1-2*x+2*x^2)/(1-2*x+3*x^2-x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-3,1}, {1,0,-1}, 50] (* G. C. Greubel, Aug 08 2018 *)
  • PARI
    {a(n) = if( n<0, polcoeff( (1 - x) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 - 2*x + 2*x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n))}
    

Formula

G.f.: (1 - 2*x + 2*x^2) / (1 - 2*x + 3*x^2 - x^3).
a(n) = A052921(-n). a(n)^2 - a(n-1)*a(n+1) = A034943(n).
a(n) = A127896(n) -2*A127896(n-1) + 2*A127896(n-2). - R. J. Mathar, Sep 24 2021

A329244 Sum of every third term of the Padovan sequence A000931.

Original entry on oeis.org

1, 2, 3, 5, 10, 22, 50, 115, 266, 617, 1433, 3330, 7740, 17992, 41825, 97230, 226031, 525457, 1221538, 2839730, 6601570, 15346787, 35676950, 82938845, 192809421, 448227522, 1042002568, 2422362080, 5631308625, 13091204282, 30433357675, 70748973085, 164471408186
Offset: 0

Views

Author

David Nacin, Nov 09 2019

Keywords

Examples

			For n = 3, a(3) = 1+1+1+2 = 5.
		

Crossrefs

Partial sums of A034943.
Cf. A000931.

Programs

  • Mathematica
    LinearRecurrence[{4, -5, 3, -1}, {1, 2, 3, 5}, 50] (* Paolo Xausa, Apr 08 2024 *)
  • PARI
    Vec((1 - 2*x) / ((1 - x)*(1 - 3*x + 2*x^2 - x^3)) + O(x^35)) \\ Colin Barker, Nov 09 2019
  • Python
    p = lambda x:[1, 0, 0][x] if x<3 else p(x-2)+p(x-3)
    a = lambda x:sum(p(3*i) for i in range(x+1))
    

Formula

a(n) = Sum_{i=0..n} A000931(3*i).
a(n) = A000931(3n+2)+1.
From Colin Barker, Nov 09 2019: (Start)
G.f.: (1 - 2*x) / ((1 - x)*(1 - 3*x + 2*x^2 - x^3)).
a(n) = 4*a(n-1) - 5*a(n-2) + 3*a(n-3) - a(n-4) for n>3. (End)
Previous Showing 11-20 of 22 results. Next