cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A179012 Primes that are the sum of three consecutive composite odd numbers.

Original entry on oeis.org

61, 73, 107, 163, 197, 233, 263, 271, 331, 397, 409, 419, 467, 523, 571, 599, 677, 691, 757, 827, 839, 883, 929, 997, 1039, 1051, 1063, 1097, 1123, 1153, 1163, 1171, 1187, 1223, 1231, 1291, 1301, 1367, 1433, 1493, 1523, 1531, 1571, 1619, 1627, 1637, 1667, 1693, 1783
Offset: 1

Views

Author

Keywords

Examples

			15+21+25=61, 21+25+27=73, 33+35+39=107.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[!PrimeQ[n],s=n;k=1,Continue[]];If[!PrimeQ[n+2],s+=n+2;k=2;q=2,If[!PrimeQ[n+4],s+=n+4;k=2;q=4,If[!PrimeQ[n+6],s+=n+6;k=2;q=6]]];If[!PrimeQ[n+q+2],s+=n+q+2;k=3;q+=2,If[!PrimeQ[n+q+4],s+=n+q+4;k=3;q+=4,If[!PrimeQ[n+q+6],s+=n+q+6;k=3;q+=6]]];If[PrimeQ[s],AppendTo[lst,s]],{n,9,6!,2}];lst
    nn=1001;With[{compodd=Complement[Range[9,nn,2],Prime[Range[ PrimePi[ nn]]]]}, Select[ Total/@ Partition[compodd,3,1],PrimeQ]] (* Harvey P. Dale, Dec 09 2012 *)

A220569 Smallest prime divisor of prime(n) + prime(n+1) + prime(n+2).

Original entry on oeis.org

2, 3, 23, 31, 41, 7, 59, 71, 83, 97, 109, 11, 131, 11, 3, 173, 11, 199, 211, 223, 5, 251, 269, 7, 7, 311, 11, 7, 349, 7, 5, 11, 5, 439, 457, 3, 487, 503, 3, 13, 19, 5, 7, 19, 607, 3, 661, 7, 13, 701, 23, 17, 7, 3, 3, 11, 19, 829, 29, 857, 883, 911, 7, 941
Offset: 1

Views

Author

Zak Seidov, Dec 16 2012

Keywords

Examples

			a(6) = 7 because prime(6) + prime(6+1) + prime(6+2) = 13 + 17 + 19 = 49 and the smallest prime factor of 49 is 7.
		

Crossrefs

Programs

  • PARI
    {a=2; b=3; c=5; for(n=1, 100, s=a+b+c;
    dv=divisors(s); print1(dv[2]", "); a=b; b=c; c=nextprime(c+2))}

A244186 Primes which are the concatenation of five consecutive primes p, q, r, s, t while the sum (p + q + r + s + t) is another prime.

Original entry on oeis.org

711131719, 5359616771, 6771737983, 149151157163167, 401409419421431, 479487491499503, 757761769773787, 14091423142714291433, 18111823183118471861, 21132129213121372141, 26892693269927072711, 27192729273127412749, 36133617362336313637, 37613767376937793793
Offset: 1

Views

Author

K. D. Bajpai, Jun 21 2014

Keywords

Comments

Subsequence of A086041.
Numbers: Concatenation of 5 consecutive primes at A132905.

Examples

			711131719 is in the sequence because the concatenation of [7, 11, 13, 17, 19] = 711131719 which is prime. The sum [7 + 11 + 13 + 17 + 19] = 67 is another prime.
5359616771 is in the sequence because the concatenation of [53, 59, 61, 67, 71] = 5359616771 which is prime. The sum [53 + 59 + 61 + 67 + 71] = 311 is another prime.
		

Crossrefs

Programs

  • Mathematica
    FromDigits[Flatten[IntegerDigits/@#]]&/@Select[Partition[Prime[Range[ 1000]],5,1],AllTrue[{Total[#],FromDigits[Flatten[ IntegerDigits/@ #]]}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 24 2014 *)

A281960 Primes that are the sum of three consecutive odd semiprimes.

Original entry on oeis.org

61, 79, 107, 139, 163, 191, 211, 263, 271, 373, 443, 617, 719, 733, 761, 971, 991, 1097, 1129, 1231, 1259, 1373, 1439, 1531, 1543, 1597, 1663, 1697, 1733, 1753, 1777, 1831, 2053, 2081, 2099, 2137, 2161, 2213, 2383, 2423, 2543, 2677, 2687, 2719, 2777, 2843, 2917
Offset: 1

Views

Author

K. D. Bajpai, Feb 03 2017

Keywords

Examples

			a(1) = 61 is a prime and 61 = 15 + 21 + 25; the sum of three consecutive odd semiprimes.
a(2) = 79 is a prime and 79 = 21 + 25 + 33; the sum of three consecutive odd semiprimes.
		

Crossrefs

Programs

  • Mathematica
    Select[Total /@ Partition[Select[Range[2000], Plus @@ Last /@ FactorInteger[#] == 2 && OddQ[#] &], 3, 1], PrimeQ]
  • PARI
    list(lim)=my(v=List(),u=v,t,L=lim+10); forprime(p=3,L\3, forprime(q=3,min(p,L\p), listput(u,p*q))); u=Set(u); for(i=3,#u, if(isprime(t=u[i-2]+u[i-1]+u[i]), listput(v,t))); while((t=u[#u-1]+u[#u]+L++)lim, break); if(isprime(t), listput(v,t)))); Vec(v) \\ Charles R Greathouse IV, Feb 03 2017

A289361 Least sum s of three consecutive primes such that s is a multiple of the n-th prime.

Original entry on oeis.org

10, 15, 10, 49, 121, 143, 187, 551, 23, 319, 31, 407, 41, 301, 235, 159, 59, 1891, 1943, 71, 803, 395, 83, 2759, 97, 1717, 3193, 749, 109, 565, 3175, 131, 2329, 1807, 7301, 6493, 471, 1793, 1169, 173, 1611, 5611, 2101, 3281, 985, 199, 211, 223, 1135, 4351, 5359, 11233, 2651
Offset: 1

Views

Author

Zak Seidov, Jul 04 2017

Keywords

Comments

Are all terms distinct? Is a(1)=a(3)=10 the only case of equality?

Examples

			a(1)=10=A034961(1), a(2)=15=A034961(2), a(3)=319=A034961(27).
		

Crossrefs

Cf. A034961, A034962 (subsequence).

Programs

  • Mathematica
    Table[Function[p, k = 1; While[! Divisible[Set[s, Total@ Prime@ Range[k, k + 2]], p], k++]; s]@ Prime@ n, {n, 53}] (* or *)
    s = Total /@ Partition[Prime@ Range[10^4], 3, 1]; Table[SelectFirst[s, Divisible[#, Prime@ n] &], {n, 53}] (* Michael De Vlieger, Jul 04 2017 *)
  • PARI
    a(n)=p = 2; q = 3; pn = prime(n); forprime(r=5,,if (((s=p+q+r) % pn) == 0, return (s)); p = q; q = r;); \\ Michel Marcus, Jul 04 2017
    
  • PARI
    isA034961(n)=my(p=precprime(n\3),q=nextprime(n\3+1),r=n-p-q); if(r>q, r==nextprime(q+2), r==precprime(p-1) && r)
    a(n,p=prime(n))=if(p==5, return(10)); my(k=1); while(!isA034961(p*k), k+=2); p*k \\ Charles R Greathouse IV, Jul 05 2017

A344868 Primes p that are equal to (prime(k)+2*prime(k+1)+3*prime(k+2))/2 for some k.

Original entry on oeis.org

17, 101, 191, 227, 293, 431, 461, 557, 571, 757, 821, 863, 1039, 1193, 1213, 1277, 1291, 1307, 1373, 1483, 1499, 1721, 1811, 2239, 2293, 2309, 2447, 2689, 3167, 3181, 3547, 3617, 3701, 3881, 4243, 4441, 4703, 4723, 4871, 5651, 6079, 6101, 6133, 6829, 6907, 6997, 7523, 7853, 7879, 7949
Offset: 1

Views

Author

Zak Seidov, May 31 2021

Keywords

Comments

Corresponding values of k: 2, 10, 17, 20, 24, 33, 35, 41, 42, 53, 57, 60, 68, 77, 78, 81, 82, 83, 87, 93, 94, 104, 109, 131, 134, 135, 140, 153, 176, 177, 193, 196, 201, 209, 222, 233, 246, 247, 256, 288, 306, 307, 308, 337, 341, 344, 367, 379, 380, 382, 393, 395.

Examples

			17 = (3 + 2*5 + 3*7)/2, 101 = (29 + 2*31 + 3*37)/2.
		

Crossrefs

Cf. A034962.

Programs

  • Mathematica
    s = {}; Do[If[PrimeQ[p = (Prime[k] + 2*Prime[k + 1] + 3*Prime[k + 2])/2], AppendTo[s, p]], {k, 400}]; s
    Select[(#[[1]]+2#[[2]]+3#[[3]])/2&/@Partition[Prime[ Range[ 500]],3,1],PrimeQ] (* Harvey P. Dale, Jan 28 2022 *)
  • PARI
    {p = 3; q = 5; r = 7; for (k = 1, 400, if (isprime (P = (p + 2*q + 3*r)/2), print1 (P ", ")); p = q; q = r; r = nextprime (r + 2))}

A345472 Emirps p such that both p and its reversal are sums of three consecutive primes.

Original entry on oeis.org

1151, 1249, 1511, 3467, 3697, 7643, 7963, 9421, 11593, 32749, 36467, 39511, 71329, 76463, 92317, 94723, 110119, 111109, 123707, 124309, 124823, 128377, 141371, 146953, 150383, 155153, 160159, 164291, 167779, 173141, 178223, 184609, 190807, 192383, 192461, 199247, 304193, 304879, 306133, 322871
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jun 20 2021

Keywords

Comments

Numbers p such that p and its digit reversal are distinct members of A034962.

Examples

			a(4) = 1511 because 1511 and its reversal 1151 are distinct primes, and 1511 = 499+503+509 and 1151 = 379+383+389 are sums of three consecutive primes.
		

Crossrefs

Programs

  • Maple
    digrev:= proc(n) local L, i;
      L:= convert(n, base, 10);
      add(L[-i]*10^(i-1), i=1..nops(L))
    end proc:P:= select(isprime, [2,seq(i,i=3..nextprime(nextprime(333333)),2)]):
    P3:= convert(select(isprime,P[1..-3]+P[2..-2]+P[3..-1]),set):
    B:= P3 intersect map(digrev,P3):
    sort(convert(remove(t -> digrev(t)=t,B),list);

A050200 Let p = prime(n). Then a(n) = p + (next prime >= p+1) + (next prime >= p+3).

Original entry on oeis.org

10, 15, 23, 29, 41, 47, 59, 65, 81, 97, 105, 119, 131, 137, 153, 171, 187, 195, 209, 223, 231, 245, 261, 283, 299, 311, 317, 329, 335, 367, 389, 405, 425, 437, 457, 465, 483, 497, 513, 531, 551, 563, 581, 587, 607, 621, 657, 677, 689, 695, 711, 731, 743, 765
Offset: 0

Views

Author

Cino Hilliard, May 08 2003

Keywords

Comments

The occurrence of multiples of 3 in the sequence appears to converge to about 0.44.

Crossrefs

Cf. A034962.

Programs

  • Mathematica
    nextprim[n_] := Block[{k = n}, While[ ! PrimeQ[k], k++ ]; k]; f[n_] := (x = Prime[n]; nextprim[x] + nextprim[x + 1] + nextprim[x + 3]); Table[ f[n], {n, 54}] (* Robert G. Wilson v, Feb 12 2005 *)
    np[n_]:=Module[{pr=Prime[n]},pr+NextPrime[pr+1]+NextPrime[pr+3]]; Join[ {10}, Array[ np,60,2]] (* Harvey P. Dale, Mar 04 2015 *)
  • PARI
    sumprime3(n) = { c1=0; c2=0; forprime(x=2,n, s = nextprime(x)+nextprime(x+1)+nextprime(x+3); c1++; if(s%3==0,c2++); print1(s" "); ); print(); print(c2/c1+.0) }

Extensions

Definition corrected by Zak Seidov, Robert G. Wilson v and Ralf Stephan, Feb 10 2005

A125270 Coefficient of x^2 in polynomial whose zeros are 5 consecutive primes starting with the n-th prime.

Original entry on oeis.org

1358, 3954, 10478, 22210, 43490, 78014, 129530, 206650, 324350, 466270, 621466, 853742, 1132130, 1436690, 1870850, 2388050, 2886370, 3440410, 4133410, 4904906, 5926654, 7195670, 8425430, 9792950, 11040910, 12098990, 13917898, 16097810
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2007

Keywords

Comments

Sums of all distinct products of 3 out of 5 consecutive primes, starting with the n-th prime; value of 3rd elementary symmetric function on the 5 consecutive primes.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a, (Prime[x] Prime[x + 1] Prime[x + 2] + Prime[x] Prime[x + 1] Prime[x + 3] + Prime[x] Prime[x + 1] Prime[x + 4] + Prime[x] Prime[x + 2] Prime[x + 3] + Prime[x] Prime[x + 2] Prime[x + 4] + Prime[x] Prime[x + 3] Prime[x + 4] + Prime[x + 1] Prime[x + 2] Prime[x + 3] + Prime[x + 1] Prime[x + 2] Prime[x + 4] + Prime[x + 1] Prime[x + 3] Prime[x + 4] + Prime[x + 2] Prime[x + 3] Prime[x + 4])], {x, 1, 100}]; a
    fcp[{p_,q_,r_,s_,t_}]:=p*q(r+s+t)+(p+q)r(s+t)+(p+q+r)s*t; fcp/@Partition[ Prime[ Range[40]],5,1] (* Harvey P. Dale, Sep 05 2014 *)

Formula

Let p = Prime(n), q = Prime(n+1), r = Prime(n+2), s = Prime(n+3) and t = Prime(n+4). Then a(n) = p q (r+s+t) + (p + q) r (s + t) + (p + q + r) s t.

Extensions

Edited and corrected by Franklin T. Adams-Watters, Jan 23 2007

A341338 a(n) is the smallest prime that is simultaneously the sum of 2n-1, 2n+1 and 2n+3 consecutive primes.

Original entry on oeis.org

83, 311, 55813, 437357, 1219789, 8472193, 9496853, 6484103, 2166953, 37296143, 12671599, 13432571, 14968909, 145616561, 732092831, 220872569, 1381099933, 93482633, 4142423, 87030017, 3193060007, 736535783, 6390999871, 280886077, 464341303, 268231657, 686836817, 9000046663
Offset: 1

Views

Author

Zak Seidov, Apr 25 2021

Keywords

Examples

			For n = 1: 83 = 23 + 29 + 31 = 11 + 13 + 17 + 19 + 23, and 83 is the smallest prime that is the sum of 1, 3 and 5 consecutive primes, so a(1) = 83.
		

Crossrefs

Programs

  • Mathematica
    Array[(k=1;
    While[(i=Select[Intersection@@((Total/@Subsequences[Prime@Range@Prime[k++],{#}])&/@{2#-1,2#+1,2#+3}),PrimeQ])=={}];First@i)&,4] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
Previous Showing 31-40 of 40 results.