cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A147630 a(1) = 1; for n>1, a(n) = Product_{k = 1..n-1} (9k - 3).

Original entry on oeis.org

1, 6, 90, 2160, 71280, 2993760, 152681760, 9160905600, 632102486400, 49303993939200, 4289447472710400, 411786957380198400, 43237630524920832000, 4929089879840974848000, 606278055220439906304000, 80028703289098067632128000, 11284047163762827536130048000
Offset: 1

Views

Author

Keywords

Comments

Original name was: 9-factorial numbers (5).

Crossrefs

Programs

  • Magma
    [Round(9^n*Gamma(n+6/9)/Gamma(6/9)): n in [0..20]]; // Vincenzo Librandi, Feb 21 2015
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,9}];lst
    Table[Product[9k-3,{k,1,n-1}],{n,20}] (* Harvey P. Dale, Sep 01 2016 *)
  • Maxima
    a(n):=n!*sum(binomial(k,n-k-1)*3^k*(-1)^(n-k-1)*binomial(n+k-1,n-1),k,1,n-1)/n; /* Vladimir Kruchinin, Apr 01 2011 */
    
  • PARI
    a(n) = n--; prod(k=1, n, 9*k-3); \\ Michel Marcus, Feb 28 2015

Formula

a(n+1) = Sum_{k, 0<=k<=n}A132393(n,k)*6^k*9^(n-k). - Philippe Deléham, Nov 09 2008
a(n) = n!*(Sum_{k=1..n-1} binomial(k,n-k-1)*3^k*(-1)^(n-k-1)*binomial(n+k-1,n-1))/n for n>1, also a(n) = n!*A097188(n-1). - Vladimir Kruchinin, Apr 01 2011
a(n) = (-3)^n*sum_{k=0..n} 3^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) = round(9^n * Gamma(n+6/9) / Gamma(6/9)). - Vincenzo Librandi, Feb 21 2015
Sum_{n>=1} 1/a(n) = 1 + (e/9^3)^(1/9)*(Gamma(2/3) - Gamma(2/3, 1/9)). - Amiram Eldar, Dec 21 2022

Extensions

New name from Peter Bala, Feb 20 2015
More terms from Michel Marcus, Feb 28 2015

A147631 9-factorial numbers (6).

Original entry on oeis.org

1, 7, 112, 2800, 95200, 4093600, 212867200, 12984899200, 908942944000, 71806492576000, 6318971346688000, 612940220628736000, 64971663386646016000, 7471741289464291840000, 926495919893572188160000, 123223957345845101025280000, 17497801943110004345589760000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,6,2*5!,9}];lst

Formula

a(n+1) = Sum_{k=0..n} A132393(n,k)*7^k*9^(n-k). - Philippe Deléham, Nov 09 2008
a(n) = (-2)^n*Sum_{k=0..n} (9/2)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
Sum_{n>=1} 1/a(n) = 1 + (e/9^2)^(1/9)*(Gamma(7/9) - Gamma(7/9, 1/9)). - Amiram Eldar, Dec 21 2022
Previous Showing 11-12 of 12 results.