cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A190278 Number of decimal digits in LCM of Fibonacci sequence {F_1, ..., F_n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 17, 20, 21, 25, 27, 29, 31, 36, 38, 42, 44, 48, 51, 56, 58, 64, 67, 72, 75, 80, 83, 90, 94, 99, 103, 111, 113, 122, 126, 131, 136, 145, 149, 157, 162, 168, 173, 184, 188, 196, 201, 209, 215
Offset: 1

Views

Author

Jonathan Vos Post, May 07 2011

Keywords

Comments

Implicitly in Mathematics Teacher, Problem 15, pp. 684-685, May 2011.

Examples

			a(4) = 1 because lcm(F_1, F_2, F_3, F_4) = 6 has one decimal digit.
a(19) = 25 because lcm(F_1, ..., F_19) = 2679944489486672512824720 has 25 decimal digits.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n) option remember;
          `if`(n=1, 1, ilcm(b(n-1), fibonacci(n)))
        end:
    a:= n-> length(b(n)):
    seq(a(n), n=1..80); # Alois P. Heinz, Jul 28 2011
  • Mathematica
    Table[IntegerLength[LCM@@Fibonacci[Range[n]]],{n,60}] (* Harvey P. Dale, Jan 10 2025 *)
  • PARI
    a(n) = #Str(lcm(vector(n, k, fibonacci(k)))); \\ Michel Marcus, Mar 13 2018

Formula

a(n) = A055642(A035105(n)) = floor(log_10(10*A035105(n))).

A355322 LCM of Lucas numbers {L(1), L(2), ..., L(n)}.

Original entry on oeis.org

1, 3, 12, 84, 924, 2772, 80388, 3778236, 71786484, 2943245844, 585705922956, 13471236227988, 7018514074781748, 1972202455013671188, 61138276105423806828, 134932175364670341669396, 481842798227237790101413116, 154671538230943330622553610236
Offset: 1

Views

Author

Clark Kimberling, Jul 16 2022

Keywords

Crossrefs

Cf. A000032, A035105 (LCM of Fibonacci numbers), essentially the same as A062954.

Programs

  • Mathematica
    Table[LCM @@ LucasL[Range[n]], {n, 1, 16}]
    Module[{nn=20,ln},ln=LucasL[Range[nn]];Table[LCM@@Take[ln,n],{n,nn}]] (* Harvey P. Dale, Sep 26 2024 *)
  • PARI
    Lucas(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032
    a(n) = lcm(apply(Lucas, [1..n])); \\ Michel Marcus, Jul 17 2022
    
  • Python
    from math import lcm
    from sympy import lucas
    def A355322(n): return lcm(*(lucas(i) for i in range(1,n+1))) # Chai Wah Wu, Jul 17 2022

A342875 Decimal expansion of 3*log(phi)/Pi^2, where phi is the golden ratio.

Original entry on oeis.org

1, 4, 6, 2, 7, 0, 8, 5, 5, 0, 9, 3, 1, 8, 5, 7, 9, 4, 3, 3, 7, 7, 3, 6, 9, 7, 0, 4, 9, 2, 6, 2, 3, 1, 5, 6, 2, 6, 5, 4, 6, 2, 3, 9, 7, 8, 1, 7, 3, 8, 3, 2, 3, 7, 3, 7, 5, 3, 6, 9, 8, 8, 4, 7, 1, 4, 4, 9, 9, 5, 6, 8, 2, 5, 8, 6, 4, 7, 8, 2, 6, 0, 3, 7, 2, 6, 7
Offset: 0

Views

Author

Stefano Spezia, Mar 28 2021

Keywords

Examples

			0.1462708550931857943377369704926...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[3Log[(1+Sqrt[5])/2]/Pi^2,87]]]

A374667 Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) = c_n * F(k)/F(k+2) where c_n = LCM of F(3), F(4), ... F(n+2) (and F() are the Fibonacci numbers).

Original entry on oeis.org

1, 3, 2, 15, 10, 12, 60, 40, 48, 45, 780, 520, 624, 585, 600, 5460, 3640, 4368, 4095, 4200, 4160, 92820, 61880, 74256, 69615, 71400, 70720, 70980, 1021020, 680680, 816816, 765765, 785400, 777920, 780780, 779688, 90870780, 60580520, 72696624, 68153085, 69900600, 69234880, 69489420, 69392232, 69429360
Offset: 1

Views

Author

J. Lowell, Jul 15 2024

Keywords

Examples

			Triangle begins:
      1;
      3,     2;
     15,    10,    12;
     60,    40,    48,    45;
    780,   520,   624,   585,   600;
   5460,  3640,  4368,  4095,  4200,  4160;
  92820, 61880, 74256, 69615, 71400, 70720, 70980;
  ...
Fifth row is 780, 520, 624, 585, 600. These are 1/2, 1/3, 2/5, 3/8, 5/13 of c_5 = 1560.
		

Crossrefs

Programs

  • PARI
    row(n)={my(m=lcm(vector(n,k,fibonacci(k+2)))); vector(n, k, fibonacci(k)*m/fibonacci(k+2))}

Formula

T(n,k) = A035105(n+2) * A000045(k) / A000045(k+2).
Previous Showing 11-14 of 14 results.