cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A091727 Norms of prime ideals of Z[sqrt(-5)].

Original entry on oeis.org

2, 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 103, 107, 109, 121, 127, 149, 163, 167, 169, 181, 223, 227, 229, 241, 263, 269, 281, 283, 289, 307, 347, 349, 361, 367, 383, 389, 401, 409, 421, 443, 449, 461, 463, 467, 487
Offset: 1

Views

Author

Paul Boddington, Feb 02 2004

Keywords

Comments

Consists of primes congruent to 1, 2, 3, 5, 7, 9 (mod 20) together with the squares of all other primes.
From Jianing Song, Feb 20 2021: (Start)
The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Note that Z[sqrt(-5)] has class number 2.
For primes p == 1, 9 (mod 20), there are two distinct ideals with norm p in Z[sqrt(-5)], namely (x + y*sqrt(-5)) and (x - y*sqrt(-5)), where (x,y) is a solution to x^2 + 5*y^2 = p.
For p == 3, 7 (mod 20), there are also two distinct ideals with norm p, namely (p, x+y*sqrt(-5)) and (p, x-y*sqrt(-5)), where (x,y) is a solution to x^2 + 5*y^2 = p^2 with y != 0; (2, 1+sqrt(-5)) and (sqrt(-5)) are respectively the unique ideal with norm 2 and 5.
For p == 11, 13, 17, 19 (mod 20), (p) is the only ideal with norm p^2. (End)

Examples

			From _Jianing Song_, Feb 20 2021: (Start)
Let |I| be the norm of an ideal I, then:
|(2, 1+sqrt(-5))| = 2;
|(3, 2+sqrt(-5))| = |(3, 2-sqrt(-5))| = 3;
|(sqrt(-5))| = 5;
|(7, 1+3*sqrt(-5))| = |(7, 1-3*sqrt(-5))| = 7;
|(23, 22+3*sqrt(-5))| = |(23, 22-3*sqrt(-5))| = 23;
|(3 + 2*sqrt(-5))| = |(3 - 2*sqrt(-5))| = 29;
|(6 + sqrt(-5))| = |(6 - sqrt(-5))| = 41. (End)
		

References

  • David A. Cox, Primes of the form x^2+ny^2, Wiley, 1989.
  • A. Frohlich and M. J. Taylor, Algebraic number theory, Cambridge university press, 1991.

Crossrefs

Cf. A091728.
The number of distinct ideals with norm n is given by A035170.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), this sequence (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA091727(n) = { my(ms = [1, 2, 3, 5, 7, 9], p, e=isprimepower(n,&p)); if(!e || e>2, 0, bitxor(e-1,!!vecsearch(ms,p%20))); }; \\ Antti Karttunen, Feb 24 2020

Extensions

Offset corrected by Jianing Song, Feb 20 2021

A289741 a(n) = Kronecker symbol (-20/n).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0
Offset: 0

Views

Author

Jianing Song, Dec 27 2018

Keywords

Comments

Period 20: repeat [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1].
This sequence is one of the three non-principal real Dirichlet characters modulo 20. The other two are Jacobi or Kronecker symbols {(20/n)} (or {(n/20)}) and {((-100)/n)} (A185276).
Note that (Sum_{i=0..19} i*a(i))/(-20) = 2 gives the class number of the imaginary quadratic field Q(sqrt(-5)). The fact Q(sqrt(-5)) has class number 2 implies that Q(sqrt(-5)) is not a unique factorization domain.

Crossrefs

Cf. A035170 (inverse Moebius transform).
Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), this sequence (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Mathematica
    Array[KroneckerSymbol[-20, #]&, 100, 0] (* Amiram Eldar, Jan 10 2019 *)
  • PARI
    a(n) = kronecker(-20, n)

Formula

a(n) = 1 for n in A045797; -1 for n in A045798; 0 for n that are not coprime with 20.
Completely multiplicative with a(p) = a(p mod 20) for primes p.
a(n) = A080891(n)*A101455(n).
a(n) = -a(n+10) = -a(-n) for all n in Z.
Multiplicative with a(2) = a(5) = 0, a(p) = (-1)^floor(p/10) otherwise; equivalently: a(n) = (-1)^floor(n/10) if n is coprime to 2*5, 0 otherwise. - M. F. Hasler, Feb 28 2022

A033718 Product theta3(q^d); d | 5.

Original entry on oeis.org

1, 2, 0, 0, 2, 2, 4, 0, 0, 6, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 8, 0, 0, 4, 2, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 0, 6, 4, 0, 0, 6, 0, 0, 0, 0, 8, 0, 4, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 10, 0, 0, 8, 0, 4, 0, 0, 4, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 2, 0, 0, 0, 2, 12
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k>=0} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).
Number of representations of n as a sum of five times a square and a square. - Ralf Stephan, May 14 2007

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p 102 eq 9.

Crossrefs

Programs

  • Maple
    S:= series(JacobiTheta3(0,q)*JacobiTheta3(0,q^5), q, 1001):
    seq(coeff(S,q,j),j=0..1000); # Robert Israel, Dec 22 2015
  • Mathematica
    terms = 127; s = EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^5] + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017 *)
  • PARI
    {a(n)=if(n<1, n==0, qfrep([1,0;0,5],n)[n]*2)} /* Michael Somos, Aug 13 2006 */
    
  • PARI
    N=666;  x='x+O('x^N);
    T3(x)=1+2*sum(n=1,ceil(sqrt(N)),x^(n*n));
    Vec(T3(x)*T3(x^5))
    /* Joerg Arndt, Sep 21 2012 */

Formula

Theta series of lattice with Gram matrix [1 0 / 0 5].
Expansion of phi(q)phi(q^5) in powers of q where phi(q) is a Ramanujan theta function.
Euler transform of period 20 sequence [ 2, -3, 2, -1, 4, -3, 2, -1, 2, -6, 2, -1, 2, -3, 4, -1, 2, -3, 2, -2, ...]. - Michael Somos, Aug 13 2006
If p is prime then a(p) is nonzero iff p is in A033205.
0=a(n)a(2n) and 2*A035170(n) = a(n) + a(2n) if n>0. - Michael Somos, Oct 21 2006
a(n) is nonzero iff n is in A020669. - Robert Israel, Dec 22 2015
a(0) = 1, a(n) = (1+(-1)^t)b(n) for n > 0, where t is the number of prime factors of n, counting multiplicity, which are == 2,3,7 (mod 20), and b() is multiplicative with b(p^e) = (e+1) for primes p == 1,3,7,9 (mod 20) and b(p^e) = (1+(-1)^e)/2 for primes p == 11,13,17,19 (mod 20). (This formula is Corollary 3.3 in the Berkovich-Yesilyurt paper) - Jeremy Lovejoy, Nov 12 2024

A028586 Theta series of lattice with Gram matrix [2 1; 1 3].

Original entry on oeis.org

1, 0, 2, 4, 0, 0, 0, 4, 2, 0, 2, 0, 4, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 0, 8, 4, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 0, 0, 0, 4, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 12, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 8, 0, 0, 6, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
The number of integer solutions (x, y) to 2*x^2 + 2*x*y + 3*y^2 = n, discriminant -20. - Ray Chandler, Jul 12 2014

Examples

			1 + 2*q^2 + 4*q^3 + 4*q^7 + 2*q^8 + 2*q^10 + 4*q^12 + 4*q^15 + 6*q^18 + 4*q^23 + 8*q^27 + 4*q^28 + 2*q^32 + 4*q^35 + 2*q^40 + 8*q^42 + 4*q^43 + 4*q^47 + ...
		

Programs

  • Mathematica
    terms = 104; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = phi[q^2]*phi[q^10] + 4*q^3*psi[q^4]*psi[q^20] + O[q]^(terms+1); CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
    r[n_]:=Reduce[{x, y}.{{2, 1}, {1, 3}}.{x, y}==n, {x, y}, Integers]; Table[rn=r[n]; Which[rn===False, 0, Head[rn]===Or, Length[rn], Head[rn]===And, 1], {n, 0, 105}] (* Vincenzo Librandi, Feb 23 2020 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep([2, 1; 1, 3], n)[n] * 2)} /* Michael Somos, Aug 13 2006 */

Formula

G.f.: Sum_{n,m} x^(2*n^2 + 2*m*n + 3*m^2). - Michael Somos, Jan 31 2011
Expansion of (theta_3(z)*theta_3(5z)+theta_2(z)*theta_2(5z)).
Expansion of phi(q^2) * phi(q^10) + 4 * q^3 * psi(q^4) * psi(q^20) in powers of q where phi(q),psi(q) are Ramanujan theta functions. - Michael Somos, Aug 13 2006
If p is prime then a(p) is nonzero iff p is in A106865.
0=a(n)a(2n) and 2*A035170(n)=a(n)+a(2n) if n>0. - Michael Somos, Oct 21 2006

A029718 Numbers of form 2x^2 + 2xy + 3y^2.

Original entry on oeis.org

0, 2, 3, 7, 8, 10, 12, 15, 18, 23, 27, 28, 32, 35, 40, 42, 43, 47, 48, 50, 58, 60, 63, 67, 72, 75, 82, 83, 87, 90, 92, 98, 103, 107, 108, 112, 115, 122, 123, 127, 128, 135, 138, 140, 147, 160, 162, 163, 167, 168, 172, 175, 178, 183, 188, 192, 200, 202, 203, 207, 210
Offset: 1

Views

Author

Keywords

Comments

Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 3 ].

References

  • H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. see page 3.

Crossrefs

Cf. A028927.
For primes see A106865.
For the properly represented numbers see A344232.

Formula

List contains 0 and all positive n such that 2*A035170(n) = A028586(n) is nonzero. - Michael Somos, Oct 21 2006

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 29 2000

A091728 Number of prime ideals of Z[sqrt(-5)] of norm n.

Original entry on oeis.org

0, 1, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Paul Boddington, Feb 02 2004

Keywords

Comments

It follows that the total number of ideals of norm n is A035170(n).

References

  • David A. Cox, Primes of the form x^2+ny^2, Wiley, 1989.
  • A. Frohlich and M. J. Taylor, Algebraic number theory, Cambridge university press, 1991.

Crossrefs

Programs

  • PARI
    isA091727(n) = { my(ms = [1, 2, 3, 5, 7, 9], p, e=isprimepower(n,&p)); if(!e || e>2, 0, bitxor(e-1,!!vecsearch(ms,p%20))); };
    A091728(n) = if(!isA091727(n),0,(2-((2==n)||(5==n)||issquare(n)))); \\ Antti Karttunen, Feb 24 2020

Formula

a(n)=0 if n is not in A091727. If n is in A091727 and n is 2, 5 or a square then a(n)=1. Otherwise a(n)=2.

Extensions

Data section extended up to a(121) by Antti Karttunen, Feb 24 2020

A111949 Expansion of eta(q) * eta(q^2) * eta(q^10) * eta(q^20) / (eta(q^4) * eta(q^5)) in powers of q.

Original entry on oeis.org

1, -1, -2, 1, 1, 2, -2, -1, 3, -1, 0, -2, 0, 2, -2, 1, 0, -3, 0, 1, 4, 0, -2, 2, 1, 0, -4, -2, 2, 2, 0, -1, 0, 0, -2, 3, 0, 0, 0, -1, 2, -4, -2, 0, 3, 2, -2, -2, 3, -1, 0, 0, 0, 4, 0, 2, 0, -2, 0, -2, 2, 0, -6, 1, 0, 0, -2, 0, 4, 2, 0, -3, 0, 0, -2, 0, 0, 0, 0, 1, 5, -2, -2, 4, 0, 2, -4, 0, 2, -3, 0, -2, 0, 2, 0, 2, 0, -3, 0, 1, 2, 0, -2, 0, 4
Offset: 1

Views

Author

Michael Somos, Aug 22 2005

Keywords

Comments

Number 37 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = q - q^2 - 2*q^3 + q^4 + q^5 + 2*q^6 - 2*q^7 - q^8 + 3*q^9 - q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^10] QPochhammer[ q^20] / (QPochhammer[ q^4] QPochhammer[ q^5]), {q, 0, n}]; (* Michael Somos, May 19 2015 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[d, 2] (-1)^Quotient[d, 2] KroneckerSymbol[ n/d, 5], { d, Divisors[ n]}]]; (* Michael Somos, May 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^10 + A) * eta(x^20 + A) / eta(x^4 + A) / eta(x^5 + A), n))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (d%2) * (-1)^(d\2) * kronecker( n/d, 5)))};
    
  • PARI
    {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 5], n)[n] - qfrep( [2, 1; 1, 3], n)[n])};

Formula

Euler transform of period 20 sequence [-1, -2, -1, -1, 0, -2, -1, -1, -1, -2, -1, -1, -1, -2, 0, -1, -1, -2, -1, -2, ...].
a(n) is multiplicative with a(p^e) = (-1)^e if p = 2, a(p^e) = 1 if p = 5, a(p^e) = (1 + (-1)^e) / 2 if p == 11, 13, 17, 19 (mod 20), a(p^e) = e + 1 if p == 1, 9 (mod 20), a(p^e) = (e + 1)*(-1)^e if p == 3, 7 (mod 20).
G.f.: Sum_{k>0} Kronecker(-4, k) * x^k * (1 - x^k) * (1 - x^(2*k)) / (1 - x^(5*k)).
G.f.: Sum_{k>0} Kronecker(k, 5) * x^k / (1 + x^(2*k)).
G.f.: x * Product_{k>0} (1 - x^k) * (1 + x^(5*k)) * (1 - x^(20*k)) / (1 + x^(2*k)).
|a(n)| = A035170(n). a(2*n) = -a(n). a(2*n + 1) = A129391(n). a(4*n + 3) = -2 * A033764(n).
a(5*n) = a(n). - Michael Somos, May 19 2015

A124233 Expansion of psi(q) * phi(-q^10) * chi(-q^5) / chi(-q^2) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 0, 2, 0, 2, 2, 1, 0, 3, 0, 1, 4, 0, 2, 2, 1, 0, 4, 2, 2, 2, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 2, 4, 2, 0, 3, 2, 2, 2, 3, 1, 0, 0, 0, 4, 0, 2, 0, 2, 0, 2, 2, 0, 6, 1, 0, 0, 2, 0, 4, 2, 0, 3, 0, 0, 2, 0, 0, 0, 0, 1, 5, 2, 2, 4, 0, 2
Offset: 0

Views

Author

Michael Somos, Oct 21 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 38 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 + q + q^2 + 2*q^3 + q^4 + q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ -20, #] &]]; (* Michael Somos, Jul 09 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^4] QPochhammer[ q^5] QPochhammer[ q^10] / (QPochhammer[ q] QPochhammer[ q^20]), {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -20, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^10 + A) / eta(x + A) / eta(x^20 + A), n))};

Formula

Expansion of eta(q^2) * eta(q^4) * eta(q^5) * eta(q^10) / (eta(q) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, 1, -1, 1, 0, 0, -1, 1, 0, 1, -2, ...].
Moebius transform is period 20 sequence [ 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 3, 7, 9 (mod 20), a(p^e) = (1 + (-1)^e) / 2 if p == 11, 13, 17, 19 (mod 20).
G.f.: 1 + Sum_{k>0} x^k * (1 + x^(2*k)) * (1 + x^(6*k)) / (1 + x^(10*k)).
a(2*n) = a(5*n) = a(n), a(20*n + 11) = a(20*n + 13) = a(20*n + 17) = a(20*n + 19) = 0.
a(n) = A035170(n) unless n=0. a(2*n + 1) = A129390(n). a(4*n + 3) = 2 * A033764(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(5) = 1.404962... . - Amiram Eldar, Dec 22 2023
Previous Showing 21-28 of 28 results.