cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 60 results. Next

A232557 Square numbers whose sum of proper square divisors is also square greater than 1.

Original entry on oeis.org

900, 4900, 10404, 79524, 81796, 417316, 532900, 846400, 1542564, 2464900, 3232804, 3334276, 3496900, 12432676, 43850884, 50836900, 51811204, 71470116, 107453956, 236975236, 253892356, 432889636, 544102276, 864948100, 1192597156, 1450543396
Offset: 1

Views

Author

Antonio Roldán, Nov 26 2013

Keywords

Examples

			10404 = 102^2 is a square number. Sum of proper square divisor of 10404 is 2601 + 1156 + 289 + 36 + 9 + 4 + 1 = 4096 = 64^2.
		

Crossrefs

Subsequence of A232556.

Programs

  • Mathematica
    f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); A035316[1] = 1; A035316[n_] := Times @@ f @@@ FactorInteger[n]; sqQ[n_] := n>1 && IntegerQ[Sqrt[n]];
    Select[Range[40000]^2, sqQ[A035316[#] - #]&] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    {for(n=1,10^5,m=n*n;k=sumdiv(m,d,d*issquare(d)*(d>1,print(m)))}

A285309 Sum of nonsquare divisors of n.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 10, 3, 17, 11, 23, 13, 23, 23, 10, 17, 29, 19, 37, 31, 35, 23, 55, 5, 41, 30, 51, 29, 71, 31, 42, 47, 53, 47, 41, 37, 59, 55, 85, 41, 95, 43, 79, 68, 71, 47, 103, 7, 67, 71, 93, 53, 110, 71, 115, 79, 89, 59, 163, 61, 95, 94, 42, 83, 143, 67, 121, 95, 143, 71, 145, 73, 113, 98
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 16 2017

Keywords

Examples

			a(6) = 11 because 6 has 4 divisors {1, 2, 3, 6} among which 3 are nonsquares {2, 3, 6} therefore 2 + 3 + 6 = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, Mod[DivisorSigma[0, #], 2] == 0 &], {n, 1, 75}]
    nmax = 75; Rest[CoefficientList[Series[Sum[(k + Floor[1/2 + Sqrt[k]]) x^(k + Floor[1/2 + Sqrt[k]])/(1 - x^(k + Floor[1/2 + Sqrt[k]])), {k, 1, nmax}], {x, 0, nmax}], x]]
    Array[DivisorSum[#, # &, ! IntegerQ@ Sqrt@ # &] &, 75] (* Michael De Vlieger, Nov 23 2017 *)
  • PARI
    a(n) = sumdiv(n, d, if (!issquare(d), d)); \\ Michel Marcus, Apr 17 2017
    
  • Python
    import gmpy
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if gmpy.is_square(d)==0]) # Indranil Ghosh, Apr 18 2017

Formula

G.f.: Sum_{k>=1} A000037(k)*x^A000037(k)/(1 - x^A000037(k)).
a(n) = A000203(n) - A035316(n).
a(A005117(n)) = A000203(A005117(n)) - 1.
a(p^(2*k-1)) = a(p^(2*k)) = p*(p^(2*k) - 1)/(p^2 - 1) for p is a prime and k >= 1.

A293235 a(n) is the sum of proper divisors of n that are square.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 5, 1, 1, 1, 21, 1, 1, 1, 14, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 21, 1, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 21, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 26, 5, 1, 1, 1, 21, 10, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 21, 1, 50, 10, 30, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 08 2017

Keywords

Comments

a(n) = 1 if and only if n > 1 is squarefree or the square of a prime. - Robert Israel, Oct 08 2017

Crossrefs

Programs

  • Maple
    A035316:= n -> mul((p[1]^(p[2]+2-(p[2] mod 2))-1)/(p[1]^2-1), p = ifactors(n)[2]):
    f:= n -> A035316(n) - `if`(issqr(n),n,0):
    map(f, [$1..100]); # Robert Israel, Oct 08 2017
  • Mathematica
    Table[Total[Select[Most[Divisors[n]],IntegerQ[Sqrt[#]]&]],{n,120}] (* Harvey P. Dale, Dec 29 2023 *)
  • PARI
    A293235(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA010052(d)*d.
a(n) = A035316(n) - (A010052(n)*n).
G.f.: Sum_{k>=1} k^2 * x^(2*k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 13 2021
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (zeta(3/2)-1)/3 = 0.537458449561... . - Amiram Eldar, Dec 01 2023

A300909 Sum of 4th powers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 82, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 15 2018

Keywords

Comments

Multiplicative with a(p^e) = (p^(4*(1+floor(e/4)))-1)/(p^4-1). - Robert Israel, Mar 15 2018

Examples

			a(16) = 17 because 16 has 5 divisors {1, 2, 4, 8, 16} among which 2 divisors {1, 16} are 4th powers and 1 + 16 = 17.
L.g.f.: L(x) = x + x^2/2 + x^3/3 + x^4/4 + x^5/5 + x^6/6 + x^7/7 + x^8/8 + x^9/9 + x^10/10 + x^11/11 + x^12/12 + x^13/13 + x^14/14 + x^15/15 + 17*x^16/16 + x^17/17 + ...
exp(L(x)) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + 2*x^16 + 2*x^17 + ... + A046042(n)*x^n + ...
		

Crossrefs

Cf. A000583, A001159, A035316, A046042, A046100 (positions of ones), A063775, A113061.

Programs

  • Maple
    N:= 1000: # for a(1)..a(N)
    V:= Vector(N,1):
    for m from 2 to floor(N^(1/4)) do
      R:= [seq(i,i=m^4 .. N, m^4)];
      V[R]:= map(`+`,V[R],m^4)
    od:
    convert(V,list); # Robert Israel, Mar 15 2018
  • Mathematica
    Table[DivisorSum[n, # &, IntegerQ[#^(1/4)] &], {n, 112}]
    nmax = 112; Rest[CoefficientList[Series[Sum[k^4 x^k^4/(1 - x^k^4), {k, 1, 10}], {x, 0, nmax}], x]]
    nmax = 112; Rest[CoefficientList[Series[-Log[Product[(1 - x^k^4), {k, 1, 10}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (p^(4*(1 + Floor[e/4])) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*ispower(d, 4)); \\ Michel Marcus, Mar 15 2018

Formula

G.f.: Sum_{k>=1} k^4*x^(k^4)/(1 - x^(k^4)).
L.g.f.: -log(Product_{k>=1} (1 - x^(k^4))) = Sum_{n>=1} a(n)*x^n/n.
D.g.f.: zeta(s)*zeta(4s-4). - Robert Israel, Mar 15 2018
Sum_{k=1..n} a(k) ~ zeta(5/4)*n^(5/4)/5 - n/2. - Vaclav Kotesovec, Dec 01 2020

A326058 a(n) = n - {the sum of square divisors of n}.

Original entry on oeis.org

0, 1, 2, -1, 4, 5, 6, 3, -1, 9, 10, 7, 12, 13, 14, -5, 16, 8, 18, 15, 20, 21, 22, 19, -1, 25, 17, 23, 28, 29, 30, 11, 32, 33, 34, -14, 36, 37, 38, 35, 40, 41, 42, 39, 35, 45, 46, 27, -1, 24, 50, 47, 52, 44, 54, 51, 56, 57, 58, 55, 60, 61, 53, -21, 64, 65, 66, 63, 68, 69, 70, 22, 72, 73, 49, 71, 76, 77, 78, 59, -10, 81, 82, 79
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n - A035316(n).
a(n) = A033879(n) + A326059(n).

A385005 The sum of the cubefull divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 57, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 121, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 25, 109, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

The sum of the terms in A036966 that divide n.
The number of these divisors is A190867(n), and the largest of them is A360540(n).

Crossrefs

The sum of divisors d of n such that d is: A000593 (odd), A033634 (exponentially odd), A035316 (square), A038712 (power of 2), A048250 (squarefree), A072079 (3-smooth), A073185 (cubefree), A113061 (cube), A162296 (nonsquarefree), A183097 (powerful), A186099 (5-rough), A353900 (exponentially 2^n), this sequence (cubefull), A385006 (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1) - p - If[e == 1, 0, p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; (p^(e+1)-1)/(p-1) - p - if(e == 1, 0, p^2));}

Formula

Multiplicative with a(p^e) = 1 if e <= 2, and a(p^e) = ((p^(e+1)-1) / (p-1)) - p - p^2 if e >= 3.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - p^(s-1) + 1/p^(3*s-3)).

A069292 Sum of square roots of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, Sqrt@ # &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 105}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069292(n) = { my(r="NA"); sumdiv(n, d, (issquare(d,&r)&&((d^2)<=n))*r); } \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} k * x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 19 2021

Extensions

More terms from Antti Karttunen, Nov 20 2017

A209309 Numbers whose sum of triangular divisors is also triangular and greater than 1.

Original entry on oeis.org

6, 12, 18, 24, 48, 54, 96, 102, 110, 114, 138, 162, 174, 186, 192, 204, 220, 222, 228, 246, 258, 282, 315, 318, 348, 354, 364, 366, 372, 384, 402, 414, 426, 438, 440, 444, 456, 474, 486, 492, 498, 516, 522, 534, 550, 558, 564, 582, 606, 618, 636, 642, 654, 678
Offset: 1

Views

Author

Antonio Roldán, Jan 18 2013

Keywords

Examples

			186 is a term because the sum of its triangular divisors, 1+3+6 = 10 is also triangular.
		

Crossrefs

Programs

  • Mathematica
    triQ[n_] := n > 1 && IntegerQ[Sqrt[8*n+1]]; q[n_] := triQ[1 + DivisorSum[n, #&, triQ[#] &]]; Select[Range[700], q] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    istriangular(n)=issquare(8*n+1)
    {t=0; for(n=1, 10^5, k=sumdiv(n, d, istriangular(d)*d); if(istriangular(k)&&k>>1, t+=1; write("b209309.txt",t," ",n)))}

A209310 Triangular numbers whose sum of triangular divisors is also triangular and greater than 1.

Original entry on oeis.org

6, 4186, 32131, 52975, 78210, 111628, 237016, 247456, 584821, 750925, 1464616, 3649051, 5791906, 11297881, 16082956, 24650731, 27243271, 38618866, 46585378, 51546781, 56026405, 76923406, 89880528, 96070591, 126906346, 164629585, 201854278, 228733966
Offset: 1

Views

Author

Antonio Roldán, Jan 18 2013

Keywords

Examples

			4186 is in sequence because it is triangular (4186 = 91*92/2) and the sum of its triangular divisors, 4186+91+1 = 4278 is also triangular (4278 = 92*93/2).
		

Crossrefs

Subsequence of A209309.

Programs

  • Mathematica
    triQ[n_] := n > 1 && IntegerQ[Sqrt[8*n+1]]; q[n_] := triQ[1 + DivisorSum[n, #&, triQ[#] &]]; Select[Accumulate[Range[22000]], q] (* Amiram Eldar, Aug 12 2023 *)
  • PARI
    istriangular(n)=issquare(8*n+1)
    {t=0; for(n=1, 10^8, if(istriangular(n), k=sumdiv(n, d, istriangular(d)*d) ;if(istriangular(k)&&k>>1,t+=1;write("b209310.txt",t," ",n))))}

A225882 Numbers k such that core(k) is equal to the sum of the proper square divisors of k, where core(k) = A007913(k).

Original entry on oeis.org

20, 90, 336, 650, 5440, 7371, 13000, 14762, 28730, 30240, 83810, 87296, 130682, 147420, 218400, 280370, 295240, 406875, 708122, 924482, 1397760, 1875530, 2613640, 3536000, 4881890, 4960032, 5884851, 7856640, 7893290, 8137500
Offset: 1

Views

Author

Antonio Roldán, May 19 2013

Keywords

Comments

If p is prime and p^2 + 1 squarefree, then p^2*(p^2 + 1) is in the sequence.

Examples

			13000 is a term because core(13000) = 130 = 100 + 25 + 4 + 1.
		

Crossrefs

Programs

  • PARI
    for(n=2,10^8,if(core(n)==sumdiv(n,d,d*issquare(d)),print(n)))
    
  • PARI
    ssd(f)=prod(i=1,#f[,1],(f[i,1]^(f[i,2]+2-f[i,2]%2)-1)/(f[i,1]^2-1))
    is(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^(f[i,2]%2))==ssd(f) && n>1 \\ Charles R Greathouse IV, May 20 2013
Previous Showing 31-40 of 60 results. Next