cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A352140 Numbers whose prime factorization has all even prime indices and all odd exponents.

Original entry on oeis.org

1, 3, 7, 13, 19, 21, 27, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
Also Heinz numbers of integer partitions with all even parts and all odd multiplicities, counted by A055922 aerated.
All terms are odd. - Michael S. Branicky, Mar 12 2022

Examples

			The terms together with their prime indices begin:
      1 = 1
      3 = prime(2)^1
      7 = prime(4)^1
     13 = prime(6)^1
     19 = prime(8)^1
     21 = prime(4)^1 prime(2)^1
     27 = prime(2)^3
     29 = prime(10)^1
     37 = prime(12)^1
     39 = prime(6)^1 prime(2)^1
     43 = prime(14)^1
     53 = prime(16)^1
     57 = prime(8)^1 prime(2)^1
     61 = prime(18)^1
     71 = prime(20)^1
		

Crossrefs

The restriction to primes is A031215.
These partitions are counted by A055922 (aerated).
The first condition alone is A066207, counted by A035363.
The squarefree case is A258117.
The second condition alone is A268335, counted by A055922.
A056166 = exponents all prime, counted by A055923.
A066208 = prime indices all odd, counted by A000009.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352141 = even indices with even exponents, counted by A035444.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Select[Range[100],And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from sympy import factorint, primepi
    def ok(n):
        if n%2 == 0: return False
        return all(primepi(p)%2==0 and e%2==1 for p, e in factorint(n).items())
    print([k for k in range(318) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

Intersection of A066207 and A268335.
A257991(a(n)) = A162641(a(n)) = 0.
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A001222(a(n)).

A351979 Numbers whose prime factorization has all odd prime indices and all even prime exponents.

Original entry on oeis.org

1, 4, 16, 25, 64, 100, 121, 256, 289, 400, 484, 529, 625, 961, 1024, 1156, 1600, 1681, 1936, 2116, 2209, 2500, 3025, 3481, 3844, 4096, 4489, 4624, 5329, 6400, 6724, 6889, 7225, 7744, 8464, 8836, 9409, 10000, 10609, 11881, 12100, 13225, 13924, 14641, 15376
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
Also Heinz numbers of integer partitions with all odd parts and all even multiplicities, counted by A035457 (see Emeric Deutsch's comment there).

Examples

			The terms together with their prime indices begin:
     1: 1
     4: prime(1)^2
    16: prime(1)^4
    25: prime(3)^2
    64: prime(1)^6
   100: prime(1)^2 prime(3)^2
   121: prime(5)^2
   256: prime(1)^8
   289: prime(7)^2
   400: prime(1)^4 prime(3)^2
   484: prime(1)^2 prime(5)^2
   529: prime(9)^2
   625: prime(3)^4
   961: prime(11)^2
  1024: prime(1)^10
  1156: prime(1)^2 prime(7)^2
  1600: prime(1)^6 prime(3)^2
  1681: prime(13)^2
  1936: prime(1)^4 prime(5)^2
		

Crossrefs

The second condition alone (exponents all even) is A000290, counted by A035363.
The distinct prime factors of terms all come from A031368.
These partitions are counted by A035457 or A000009 aerated.
The first condition alone (indices all odd) is A066208, counted by A000009.
The squarefree square roots are A258116, even A258117.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by complement of A086543.
A076610 = indices all prime, counted by A000607.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even exponents, odd A162642.
A257991 counts odd indices, even A257992.
A268335 = exponents all odd, counted by A055922.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A352140 = even indices with odd exponents, counted by A055922 (aerated).
A352141 = even indices with even exponents, counted by A035444.
A352142 = odd indices and odd multiplicities, counted by A117958.

Programs

  • Mathematica
    Select[Range[1000],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
  • Python
    from sympy import factorint, primepi
    def ok(n):
        return all(primepi(p)%2==1 and e%2==0 for p, e in factorint(n).items())
    print([k for k in range(15500) if ok(k)]) # Michael S. Branicky, Mar 12 2022

Formula

Squares of elements of A066208.
Intersection of A066208 and A000290.
A257991(a(n)) = A001222(a(n)).
A162641(a(n)) = A001221(a(n)).
A162642(a(n)) = A257992(a(n)) = 0.
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k-1)^2) = 1.4135142... . - Amiram Eldar, Sep 19 2022

A352143 Numbers whose prime indices and conjugate prime indices are all odd.

Original entry on oeis.org

1, 2, 5, 8, 11, 17, 20, 23, 31, 32, 41, 44, 47, 59, 67, 68, 73, 80, 83, 92, 97, 103, 109, 124, 125, 127, 128, 137, 149, 157, 164, 167, 176, 179, 188, 191, 197, 211, 227, 233, 236, 241, 257, 268, 269, 272, 275, 277, 283, 292, 307, 313, 320, 331, 332, 347, 353
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions whose parts and conjugate parts are all odd. They are counted by A053253.

Examples

			The terms together with their prime indices begin:
   1: {}
   2: {1}
   5: {3}
   8: {1,1,1}
  11: {5}
  17: {7}
  20: {1,1,3}
  23: {9}
  31: {11}
  32: {1,1,1,1,1}
  41: {13}
  44: {1,1,5}
  47: {15}
  59: {17}
  67: {19}
  68: {1,1,7}
  73: {21}
  80: {1,1,1,1,3}
		

Crossrefs

The restriction to primes is A031368.
These partitions appear to be counted by A053253.
The even version is A066207^2.
For even instead of odd conjugate parts we get A066208^2.
The first condition alone (all odd indices) is A066208, counted by A000009.
The second condition alone is A346635, counted by A000009.
A055922 counts partitions with odd multiplicities, ranked by A268335.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162642 counts odd prime exponents, even A162641.
A238745 gives the Heinz number of the conjugate prime signature.
A257991 counts odd indices, even A257992.
A258116 ranks strict partitions with all odd parts, even A258117.
A351979 = odd indices and even multiplicities, counted by A035457.
A352140 = even indices and odd multiplicities, counted by A055922 aerated.
A352141 = even indices and even multiplicities, counted by A035444.
A352142 = odd indices and odd multiplicities, counted by A117958.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],And@@OddQ/@primeMS[#]&&And@@OddQ/@conj[primeMS[#]]&]

Formula

Intersection of A066208 and A346635.

A352493 Number of non-constant integer partitions of n into prime parts with prime multiplicities.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 3, 0, 1, 4, 5, 3, 1, 3, 5, 7, 3, 5, 6, 8, 8, 11, 7, 6, 8, 15, 14, 14, 10, 15, 17, 21, 18, 23, 20, 28, 25, 31, 27, 35, 32, 33, 37, 46, 41, 50, 45, 58, 56, 63, 59, 78, 69, 76, 81, 85, 80, 103, 107, 111, 114, 127
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2022

Keywords

Examples

			The a(n) partitions for selected n (B = 11):
n = 10    16       19        20         25          28
   ---------------------------------------------------------------
    3322  5533     55333     7733       77722       BB33
          55222    55522     77222      5533333     BB222
          3322222  3333322   553322     5553322     775522
                   33322222  5522222    55333222    55533322
                             332222222  55522222    772222222
                                        333333322   3322222222222
                                        3333322222
		

Crossrefs

Constant partitions are counted by A001221, ranked by A000961.
Non-constant partitions are counted by A144300, ranked A024619.
The constant version is A230595, ranked by A352519.
This is the non-constant case of A351982, ranked by A346068.
These partitions are ranked by A352518.
A000040 lists the primes.
A000607 counts partitions into primes, ranked by A076610.
A001597 lists perfect powers, complement A007916.
A038499 counts partitions of prime length.
A053810 lists primes to primes.
A055923 counts partitions with prime multiplicities, ranked by A056166.
A257994 counts prime indices that are themselves prime.
A339218 counts powerful partitions into prime parts, ranked by A352492.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !SameQ@@#&&And@@PrimeQ/@#&& And@@PrimeQ/@Length/@Split[#]&]],{n,0,30}]

A318027 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(4*k))).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 29, 39, 57, 77, 112, 148, 205, 271, 372, 484, 647, 838, 1110, 1423, 1852, 2361, 3051, 3857, 4922, 6191, 7849, 9805, 12319, 15314, 19131, 23649, 29333, 36099, 44556, 54568, 66963, 81683, 99803, 121229, 147413, 178411, 216111, 260590, 314365, 377819, 454229
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2018

Keywords

Comments

Convolution of A000041 and A035444.
Convolution of A000712 and A082303.
Convolution inverse of A107034.
Number of partitions of n if there are 2 kinds of parts that are multiples of 4.

Examples

			a(5) = 8 because we have [5], [4, 1], [4', 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(4*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(4 k))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^4]), {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + x^(2 k) + 2*x^(3 k))/(k (1 - x^(4 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
    Table[Sum[PartitionsP[k] PartitionsP[n - 4 k], {k, 0, n/4}], {n, 0, 48}]

Formula

G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + x^(2*k) + 2*x^(3*k))/(k*(1 - x^(4*k)))).
a(n) ~ 5^(3/4) * exp(sqrt(5*n/6)*Pi) / (2^(13/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Aug 14 2018

A357851 Numbers k such that the half-alternating sum of the prime indices of k is 1.

Original entry on oeis.org

2, 8, 18, 32, 45, 50, 72, 98, 105, 128, 162, 180, 200, 231, 242, 275, 288, 338, 392, 420, 429, 450, 455, 512, 578, 648, 663, 720, 722, 800, 833, 882, 924, 935, 968, 969, 1050, 1058, 1100, 1125, 1152, 1235, 1250, 1311, 1352, 1458, 1463, 1568, 1680, 1682, 1716
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     2: {1}
     8: {1,1,1}
    18: {1,2,2}
    32: {1,1,1,1,1}
    45: {2,2,3}
    50: {1,3,3}
    72: {1,1,1,2,2}
    98: {1,4,4}
   105: {2,3,4}
   128: {1,1,1,1,1,1,1}
   162: {1,2,2,2,2}
   180: {1,1,2,2,3}
   200: {1,1,1,3,3}
		

Crossrefs

The version for k = 0 is A357631, standard compositions A357625-A357626.
The version for original alternating sum is A001105.
Positions of ones in A357629, reverse A357633.
The skew version for k = 0 is A357632, reverse A357636.
Partitions with these Heinz numbers are counted by A035444, skew A035544.
The reverse version is A357635, k = 0 version A000583.
A056239 adds up prime indices, row sums of A112798.
A316524 gives alternating sum of prime indices, reverse A344616.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, even-length A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Select[Range[1000],halfats[primeMS[#]]==1&]
Previous Showing 11-16 of 16 results.