cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 72 results. Next

A095264 a(n) = 2^(n+2) - 3*n - 4.

Original entry on oeis.org

1, 6, 19, 48, 109, 234, 487, 996, 2017, 4062, 8155, 16344, 32725, 65490, 131023, 262092, 524233, 1048518, 2097091, 4194240, 8388541, 16777146, 33554359, 67108788, 134217649, 268435374, 536870827, 1073741736, 2147483557, 4294967202, 8589934495, 17179869084, 34359738265
Offset: 1

Views

Author

Gary W. Adamson, May 31 2004

Keywords

Comments

A sequence derived from a 3rd-order matrix generator.
The number of positive 3-strand braids of degree at most n. - R. J. Mathar, May 04 2006
Define a triangle T by T(n,n) = n*(n+1)/2, T(n,1) = n*(n-1) + 1, and T(r,c) = T(r-1,c-1) + T(r-1,c). Its rows are 1; 3,3; 7,6,6; 13,13,12,10; 21,26,25,22,15; etc. The sum of the terms in the n-th row is a(n). - J. M. Bergot, May 03 2013

Examples

			a(5) = 109 = 2^7 - 3*5 - 4.
a(5) = 109 since M^5 * [1 0 0] = [1 5 109].
a(7) = 487 = 4*234 - 5*109 + 2*48.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (MatrixPower[{{1, 0, 0}, {1, 1, 0}, {1, 3, 2}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 30}] (* Robert G. Wilson v, Jun 05 2004 *)
    Table[2^(n+2)-3n-4,{n,40}] (* or *) LinearRecurrence[{4,-5,2},{1,6,19},40] (* Harvey P. Dale, Sep 24 2021 *)

Formula

Let M = [1 0 0 / 1 1 0 / 1 3 2], then M^n * [1 0 0] = [1 n a(n)]. The characteristic polynomial of M is x^3 - 4*x^2 + 5*x - 2.
a(n+3) = 4*a(n+2) - 5*a(n+1) + 2*a(n).
a(n) = Sum_{i=2..n+1} A036563(i) [A036563 is 2^i-3]. - Gerald McGarvey, Jun 28 2004
Row sums of A125232; 5th diagonal from the right of A126277; binomial transform of [1, 5, 8, 8, 8, ...]. - Gary W. Adamson, Dec 23 2006
a(n) = 2*a(n-1) + (3n-2). - Gary W. Adamson, Sep 30 2007
G.f.: -x*(1+2*x)/((2*x-1)*(x-1)^2). - R. J. Mathar, Nov 18 2007
E.g.f.: exp(x)*(4*exp(x) - 3*x - 4). - Elmo R. Oliveira, Apr 01 2025

Extensions

Edited, corrected and extended by Robert G. Wilson v, Jun 05 2004
More terms from Elmo R. Oliveira, Apr 01 2025

A130459 A059268 * A097806.

Original entry on oeis.org

1, 3, 2, 3, 6, 4, 3, 6, 12, 8, 3, 6, 12, 24, 16, 3, 6, 12, 24, 48, 32, 3, 6, 12, 24, 48, 96, 64, 3, 6, 12, 24, 48, 96, 192, 128, 3, 6, 12, 24, 48, 96, 192, 384, 256
Offset: 1

Views

Author

Gary W. Adamson, May 26 2007

Keywords

Comments

Row sums = A036563 starting (1, 5, 13, 29, 61, 125, ...).

Examples

			First few rows of the triangle:
  1;
  3, 2;
  3, 6,  4;
  3, 6, 12,  8;
  3, 6, 12, 24, 16;
  3, 6, 12, 24, 48, 32;
  ...
		

Crossrefs

Formula

A059268 * A097806 as infinite lower triangular matrices. A059268 = [1; 1,2; 1,2,4; ...]. A097806 = the pairwise operator.

A135857 Partial sums triangle based on A016777. Riordan convolution triangle ((1 + 2*x)/(1-x)^2, x/(1-x)).

Original entry on oeis.org

1, 4, 1, 7, 5, 1, 10, 12, 6, 1, 13, 22, 18, 7, 1, 16, 35, 40, 25, 8, 1, 19, 51, 75, 65, 33, 9, 1, 22, 70, 126, 140, 98, 42, 10, 1, 25, 92, 196, 266, 238, 140, 52, 11, 1, 28, 117, 288, 462, 504, 378, 192, 63, 12, 1
Offset: 0

Views

Author

Gary W. Adamson, Dec 01 2007

Keywords

Comments

A007318 * a bidiagonal matrix with all 1's in the main diagonal and all 3's in the subdiagonal.
Row sums give A036563(n+2), n >= 0.
From Wolfdieter Lang, Mar 23 2015: (Start)
This is the triangle of iterated partial sums of A016777. Such iterated partial sums of arithmetic progression sequences have been considered by Narayana Pandit (see the Mar 20 2015 comment on A000580 where the MacTutor History of Mathematics archive link and the Gottwald et al. reference, p. 338, are given).
This is therefore the Riordan triangle ((1+2*x)/(1-x)^2, x/(1-x)) with o.g.f. of the columns ((1+2*x)/(1-x)^2)*(x/(1-x))^k, k >= 0.
The column sequences are A016777, A000326, A002411, A001296, A051836, A051923, A050494, A053367, A053310, for k = 0..8.
The alternating row sums are A122553(n) = {1, repeat(3)}.
The Riordan A-sequence is A(y) = 1 + y (implying the Pascal triangle recurrence for k >= 1).
The Riordan Z-sequence is A256096, leading to a recurrence for T(n,0) given in the formula section. See the link "Sheffer a- and z-sequences" under A006232 also for Riordan A- and Z-sequences with references. (End)
When the first column (k = 0) is removed from this triangle, the result is A125232. - Georg Fischer, Jul 26 2023

Examples

			The triangle T(n, k) begins:
n\k  0   1   2    3    4    5    6   7   8  9 10 11
0:   1
1:   4   1
2:   7   5   1
3:  10  12   6    1
4:  13  22  18    7    1
5:  16  35  40   25    8    1
6:  19  51  75   65   33    9    1
7:  22  70 126  140   98   42   10   1
8:  25  92 196  266  238  140   52  11   1
9:  28 117 288  462  504  378  192  63  12  1
10: 31 145 405  750  966  882  570 255  75 13  1
11: 34 176 550 1155 1716 1848 1452 825 330 88 14  1
... reformatted and extended by _Wolfdieter Lang_, Mar 23 2015
From _Wolfdieter Lang_, Mar 23 2015: (Start)
T(3, 1) = T(2, 0) + T(2, 1) = 7 + 5 = 12 (Pascal, from the A-sequence given above).
T(4, 0) = 4*T(3, 0) - 9*T(3, 1) + 27*T(3, 2) - 81* T(3, 3) = 4*10 - 9*12 + 27*6 - 81*1 = 13, from the Z-sequence given above and in A256096.
T(4, 0) = 2*T(3, 0) - T(2, 0) = 2*10 - 7 = 13.
(End)
		

Crossrefs

Formula

Binomial transform of an infinite lower triangular matrix with all 1's in the main diagonal and all 3's in the subdiagonal; i.e., by columns - every column = (1, 3, 0, 0, 0, ...).
T(n,k) = (3n-2k+1)*binomial(n+1,k+1)/(n+1). - Philippe Deléham, Feb 08 2009
From Wolfdieter Lang, Mar 23 2015: (Start)
O.g.f. for row polynomials: (1 + 2*z)/((1- z*(1 + x))*(1 - z)) (see the Riordan property from the comment).
O.g.f. for column k (without leading zeros): (1 + 2*x)/(1-x)^(2+k), k >= 0, (Riordan property).
T(n, k) = T(n-1, k-1) + T(n-1, k) for k >= 1. From the Riordan A-sequence given above in a comment.
T(n, 0) = Sum_{j=0..n} Z(j)*T(n-1, j), for n >= 1, from the Riordan Z-sequence A256096 mentioned above in a comment. Of course, T(n, 0) = 2*T(n-1, 0) - T(n-2, 0) for n >= 2 (see A016777).
(End)

Extensions

Edited. Offset is 0 from the old name and the Philippe Deléham formula. New name, old name as first comment. - Wolfdieter Lang, Mar 23 2015

A204203 Triangle based on (0,1/4,1) averaging array.

Original entry on oeis.org

1, 1, 5, 1, 6, 13, 1, 7, 19, 29, 1, 8, 26, 48, 61, 1, 9, 34, 74, 109, 125, 1, 10, 43, 108, 183, 234, 253, 1, 11, 53, 151, 291, 417, 487, 509, 1, 12, 64, 204, 442, 708, 904, 996, 1021, 1, 13, 76, 268, 646, 1150, 1612, 1900, 2017, 2045, 1, 14, 89, 344, 914
Offset: 1

Views

Author

Clark Kimberling, Jan 12 2012

Keywords

Comments

See A204201 for a discussion and guide to other averaging arrays.

Examples

			First six rows:
1
1...5
1...6...13
1...7...19...29
1...8...26...48...61
1...9...34...74...109...125
		

Crossrefs

Cf. A204201.

Programs

  • Mathematica
    a = 0; r = 1/4; b = 1;  t[1, 1] = r;
    t[n_, 1] := (a + t[n - 1, 1])/2;
    t[n_, n_] := (b + t[n - 1, n - 1])/2;
    t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
    u[n_] := Table[t[n, k], {k, 1, n}]
    Table[u[n], {n, 1, 5}]    (* averaging array *)
    u = Table[(1/2) (1/r) 2^n*u[n], {n, 1, 12}];
    TableForm[u]  (* A204203 triangle *)
    Flatten[u]    (* A204203 sequence *)

Formula

From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A036563(n+1).
Sum_{k=1..n} T(n,k) = A014480(n-1).
T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=1, T(2,1)=1, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. (End)

A226616 Smallest positive integer k for which 1 is in a primitive cycle of n positive integers (n>1) under iteration by the Collatz-like 3x+k function.

Original entry on oeis.org

1, 5, 13, 29, 11, 17, 253, 509, 145, 43, 55, 355, 137, 1129, 1007, 131069, 97, 643, 41, 553, 281, 8388605, 4069, 4793489, 3817, 1843, 59, 113, 1301, 2155, 9397, 289, 131153, 3247, 949, 127, 77
Offset: 2

Views

Author

Geoffrey H. Morley, Jul 02 2013

Keywords

Comments

A cycle is called primitive if its elements are not a common multiple of the elements of another cycle.
The 3x+k function T_k is defined by T_k(x) = x/2 if x is even, (3x+k)/2 if x is odd, where k is odd.
For primitive cycles, GCD(k,6)=1.
For n>1, T_k has a primitive cycle of length n which includes 1 when k = A036563(n) = 2^n-3. So a(n) <= 2^n-3.

Crossrefs

A246168 a(n) = 2^n - 10.

Original entry on oeis.org

-9, -8, -6, -2, 6, 22, 54, 118, 246, 502, 1014, 2038, 4086, 8182, 16374, 32758, 65526, 131062, 262134, 524278, 1048566, 2097142, 4194294, 8388598, 16777206, 33554422, 67108854, 134217718, 268435446, 536870902, 1073741814, 2147483638
Offset: 0

Views

Author

Vincenzo Librandi, Aug 18 2014

Keywords

Crossrefs

Sequences of the form 2^n-k: A000079 (k=0), A000225 (k=1), A000918 (k=2), A036563 (k=3), A028399 (k=4), A168616 (k=5), A131130 (k=6), A048490 (k=7), A159741 (k=8), A185346 (k=9), this sequence (k=10).

Programs

  • Magma
    [2^n-10: n in [0..40]];
    
  • Mathematica
    Table[2^n - 10, {n, 0, 35}] (* or *) CoefficientList[Series[(-9 + 19 x)/(1 - 3 x + 2 x^2), {x, 0, 35}], x]
    LinearRecurrence[{3,-2},{-9,-8},50] (* Harvey P. Dale, Jan 11 2024 *)
  • PARI
    vector(50, n, 2^(n-1)-10) \\ Derek Orr, Aug 18 2014

Formula

G.f.: (-9+19*x)/(1-3*x+2*x^2).
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = A000079(n) - 10.
From Elmo R. Oliveira, Dec 21 2023: (Start)
a(n) = 2*a(n-1) + 10 for n>0.
E.g.f.: exp(x)*(exp(x) - 10). (End)

A254027 Table T(n,k) = 3^n - 2^k read by antidiagonals.

Original entry on oeis.org

0, 2, -1, 8, 1, -3, 26, 7, -1, -7, 80, 25, 5, -5, -15, 242, 79, 23, 1, -13, -31, 728, 241, 77, 19, -7, -29, -63, 2186, 727, 239, 73, 11, -23, -61, -127, 6560, 2185, 725, 235, 65, -5, -55, -125, -255, 19682, 6559, 2183, 721, 227, 49, -37, -119, -253, -511, 59048, 19681, 6557, 2179, 713, 211, 17, -101, -247, -509, -1023
Offset: 0

Views

Author

K. G. Stier, Jan 22 2015

Keywords

Comments

Table shows differences of a given power of 3 to the powers of 2 (columns), and differences of the powers of 3 to a given power of 2 (rows), respectively.
Note that positive terms (table's upper right area) and negative terms (lower left area) are separated by an imaginary line with slope -log(3)/log(2) = -1.5849625.. (see A020857). This "border zone" of the table is of interest in terms of how close powers of 3 and powers of 2 can get: i.e., those T(n,k) where k/n is a good rational approximation to log(3)/log(2), see A254351 for numerators k and respective A060528 for denominators n.

Examples

			Table begins
   0    2   8  26  80..
  -1    1   7  25  79..
  -3   -1   5  23  73..
  -7   -5   1  19  65..
  -15 -13  -7  11  49..
  ..   ..  ..  ..  ..
		

Crossrefs

Row 0 (=3^n-1) is A024023.
Row 1 (=3^n-2) is A058481.
Row 2 (=3^n-4) is A168611.
Column 0 (=1-2^n) is (-1)A000225.
Column 1 (=3-2^n) is (-1)A036563.
Column 2 (=9-2^n) is (-1)A185346.
Column 3 (=27-2^n) is (-1)A220087.
0,0-Diagonal (=3^n-2^n) is A001047.
1,0-Diagonal (=3^n-2^(n-1)) for n>0 is A083313 or A064686.
0,1-Diagonal (=3^n-2^(n+1)) is A003063.
0,2-Diagonal (=3^n-2^(n+2)) is A214091.

Programs

  • Mathematica
    Table[3^(n-k) - 2^k, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2017 *)
  • PARI
    for(i=0, 10, {
         for(j=0, i, print1((3^(i-j)-2^j),", "))
    });

A263018 If n is the i-th positive integer with binary weight j, then a(n) is the j-th positive integer with binary weight i.

Original entry on oeis.org

1, 3, 2, 7, 5, 11, 4, 15, 23, 47, 6, 95, 13, 27, 8, 31, 191, 383, 55, 767, 111, 223, 9, 1535, 447, 895, 14, 1791, 29, 59, 16, 63, 3071, 6143, 3583, 12287, 7167, 14335, 119, 24575, 28671, 57343, 239, 114687, 479, 959, 10, 49151, 229375, 458751, 1919, 917503
Offset: 1

Views

Author

Paul Tek, Oct 07 2015

Keywords

Comments

Binary weight is given by A000120.
This is a self-inverse permutation of the natural numbers.
The positive terms in the sequence A036563 give the fixed points.
A000120(n) = A263017(a(n)) for any n>0.
A263017(n) = A000120(a(n)) for any n>0.
a(2^(n+1)-1) = 2^n for any n>0.
a(2^n) = 2^(n+1)-1 for any n>0.

Crossrefs

Programs

  • PARI
    a(n) = {j = hammingweight(n); v = vector(n, k, hammingweight(k)); i = #select(x->x==j, v); nb = 0; k = 0; while(nb != j, k++; if (hammingweight(k) == i, nb++)); k;} \\ Michel Marcus, Oct 16 2015

A331372 Decimal expansion of Sum_{k>=1} 1/(2^k - 3).

Original entry on oeis.org

3, 4, 3, 6, 7, 3, 4, 3, 3, 1, 8, 1, 7, 6, 9, 0, 1, 8, 5, 4, 4, 4, 8, 2, 8, 3, 3, 3, 8, 1, 2, 4, 1, 2, 0, 6, 1, 8, 8, 8, 0, 7, 1, 7, 6, 4, 8, 6, 7, 8, 3, 8, 4, 8, 6, 5, 1, 1, 0, 5, 9, 2, 1, 7, 4, 5, 5, 0, 0, 9, 5, 4, 1, 2, 4, 1, 8, 0, 9, 7, 4, 9, 5, 2, 6, 7, 8
Offset: 0

Views

Author

Amiram Eldar, May 03 2020

Keywords

Comments

Erdős and Graham (1980) asked whether this constant is irrational, and Borwein (1991) proved that it is indeed irrational.

Examples

			0.34367343318176901854448283338124120618880717648678...
		

References

  • Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A tribute to Paul Erdős, Cambridge University Press, 1990, p. 470.

Crossrefs

Cf. A036563 (2^n-3), A065442.

Programs

  • Mathematica
    RealDigits[Sum[1/(2^k - 3), {k, 1, 400}], 10, 100][[1]]
  • PARI
    suminf(k=1, 1/(2^k - 3)) \\ Michel Marcus, May 03 2020

A344920 The Worpitzky transform of the squares.

Original entry on oeis.org

0, -1, 5, -13, 29, -61, 125, -253, 509, -1021, 2045, -4093, 8189, -16381, 32765, -65533, 131069, -262141, 524285, -1048573, 2097149, -4194301, 8388605, -16777213, 33554429, -67108861, 134217725, -268435453, 536870909, -1073741821, 2147483645, -4294967293
Offset: 0

Views

Author

Peter Luschny, Jun 24 2021

Keywords

Comments

The Worpitzky transform maps a sequence A to a sequence B, where B(n) = Sum_{k=0..n} A163626(n, k)*A(k). (If A(n) = 1/(n + 1) then B(n) are the Bernoulli numbers (with B(1) = 1/2.))
Also row 2 in A371761. Can be generated by the signed Akiyama-Tanigawa algorithm for powers (see the Python script). - Peter Luschny, Apr 12 2024

Crossrefs

Up to shift and sign: even bisection A267921, odd bisection A141725.

Programs

  • Maple
    gf := (exp(x) - 1)*(exp(x) - 2)*exp(-2*x): ser := series(gf, x, 36):
    seq(n!*coeff(ser, x, n), n = 0..31);
  • Mathematica
    W[n_, k_] := (-1)^k k! StirlingS2[n + 1, k + 1];
    WT[a_, len_] := Table[Sum[W[n, k] a[k], {k, 0, n}], {n, 0, len-1}];
    WT[#^2 &, 32] (* The Worpitzky transform applied to the squares. *)
  • Python
    # Using the Akiyama-Tanigawa algorithm for powers from A371761.
    print([(-1)**n * v for (n, v) in enumerate(ATPowList(2, 32))])
    # Peter Luschny, Apr 12 2024

Formula

a(n) = n! * [x^n] (exp(x) - 1)*(exp(x) - 2)*exp(-2*x).
a(n) = (-1)^(n + 1)*(3 - 2^(n + 1)) for n >= 1. - Hugo Pfoertner, Jun 24 2021
a(n) = [x^n] x*(2*x - 1)/(2*x^2 + 3*x + 1). - Stefano Spezia, Jun 24 2021
Previous Showing 51-60 of 72 results. Next