cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 72 results. Next

A051464 Number of divisors of 4*(2^n-1) + 1.

Original entry on oeis.org

2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 2, 4, 6, 4, 4, 16, 2, 4, 2, 4, 2, 4, 8, 12, 8, 2, 4, 8, 4, 4, 4, 4, 4, 4, 8, 8, 4, 8, 16, 8, 4, 8, 8, 6, 16, 8, 8, 8, 16, 8, 4, 32, 32, 8, 4, 8, 4, 4, 8, 16, 8, 8, 16, 48, 16, 16, 8, 4, 16, 4, 16, 16, 8, 8, 8, 16, 16, 8, 16, 32
Offset: 1

Views

Author

Edwin D. Evans, eevans2(AT)pacbell.net

Keywords

Comments

Create a table with tau(2^n-1) as the first row (A046801) and tau(m) as the first column (A000005). The second column is tau(A004760) and so on. Rows 2, 3 and 4 are easily described in terms of row 1. This sequence is row 5.

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[0, 4*(2^# - 1) + 1] &, 81] (* Michael De Vlieger, Sep 15 2021 *)
  • PARI
    a(n) = numdiv(4*(2^n-1) + 1); \\ Michel Marcus, Sep 16 2021

Formula

a(n) = tau(4*(2^n -1)+1), where d(n) = A000005(n).

Extensions

a(81) corrected by Sean A. Irvine, Sep 15 2021

A134349 A007318^(-1) * (A007318*A124929 + A124929*A007318 - A007318).

Original entry on oeis.org

1, 2, 5, 2, 8, 13, 2, 12, 24, 49, 2, 26, 24, 29, 2, 16, 48, 64, 61, 2, 20, 80, 160, 160, 125, 2, 24, 120, 320, 480, 384, 253, 2, 28, 168, 560, 1120, 1344, 896, 509, 2, 32, 224, 896, 2240, 3584, 3584, 2048, 1021
Offset: 0

Views

Author

Gary W. Adamson, Oct 21 2007

Keywords

Comments

Row sums = A134350.
Right border = A036563 starting with "1": (1, 5, 13, 29, 61, 160, ...).

Examples

			First few rows of the triangle:
  1;
  2,  5;
  2,  8, 13;
  2, 12, 24,  29;
  2, 16, 48,  64,  61;
  2, 20, 80, 160, 160, 125;
  ...
		

Crossrefs

Formula

Inverse binomial transform of (A007318*A124929 + A124929*A007318 - A007318).

A137215 a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.

Original entry on oeis.org

3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 06 2008

Keywords

Comments

Sequence generalized: a(n) = a(0)*(B^n) + F(n)* ((B^n)-1)/(B-1); a(0), B integers, F(n) arithmetic function.
Examples:
a(0) = 1, B = 10, F(n) = 1 gives A002275, F(n) = 2 gives A090843, F(n) = 3 gives A097166, F(n) = 4 gives A099914, F(n) = 5 gives A099915.
a(0) = 1, B = 2, F(n) = 1 gives A000225, F(n) = 2 gives A033484, F(n) = 3 gives A036563, F(n) = 4 gives A048487, F(n) = 5 gives A048488, F(n) = 6 gives A048489.
a(0) = 1, B = 3, F(n) = 1 gives A003462, F(n) = 2 gives A048473, F(n) = 3 gives A134931, F(n) = 4 gives A058481, F(n) = 5 gives A116952.
a(0) = 1, B = 4, F(n) = 1 gives A002450, F(n) = 2 gives A020989, F(n) = 3 gives A083420, F(n) = 4 gives A083597, F(n) = 5 gives A083584.
a(0) = 1, B = 5, F(n) = 1 gives A003463, F(n) = 2 gives A057651, F(n) = 3 gives A117617, F(n) = 4 gives A081655.
a(0) = 2, B = 10, F(n) = 1 gives A037559, F(n) = 2 gives A002276.

Examples

			a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
		

Crossrefs

Programs

  • Mathematica
    Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
  • PARI
    a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
    
  • Sage
    [3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
O.g.f.: (3 - 67*x + 478*x^2 - 1002*x^3 + 850*x^4 - 100*x^5)/((1-x)^3 * (1-10*x)^3). - R. J. Mathar, Mar 16 2008

Extensions

More terms from R. J. Mathar, Mar 16 2008
More terms from Jinyuan Wang, Feb 27 2020

A185647 Expansion of (1+2x)*(1+2*x^2)/((1-x)*(1+x)*(1-2*x^2)).

Original entry on oeis.org

1, 2, 5, 10, 13, 26, 29, 58, 61, 122, 125, 250, 253, 506, 509, 1018, 1021, 2042, 2045, 4090, 4093, 8186, 8189, 16378, 16381, 32762, 32765, 65530, 65533, 131066, 131069, 262138, 262141, 524282, 524285, 1048570, 1048573, 2097146, 2097149, 4194298, 4194301
Offset: 0

Views

Author

Philippe Deléham, Apr 23 2013

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 0, -2}, {1, 2, 5, 10}, 50] (* G. C. Greubel, Jul 09 2017 *)
  • PARI
    x='x+O('x^50); Vec((1+2*x)*(1+2*x^2)/((1-x)*(1+x)*(1-2*x^2))) \\ G. C. Greubel, Jul 09 2017

Formula

a(n) = a(n-1)*2 if n odd.
a(n) = a(n-1)+3 if n even.
a(2n) = 2^(n+2)-3 = A036563(n+2).
a(2n+1) = 2^(n+3)-6 = A131130(n+1).
a(n) = 3*a(n-2) - 2*a(n-4) with a(0)=1, a(1)=2, a(2)=5, a(3)=10.

A220088 a(n) = 2^n - 81.

Original entry on oeis.org

-80, -79, -77, -73, -65, -49, -17, 47, 175, 431, 943, 1967, 4015, 8111, 16303, 32687, 65455, 130991, 262063, 524207, 1048495, 2097071, 4194223, 8388527, 16777135, 33554351, 67108783, 134217647, 268435375, 536870831, 1073741743, 2147483567, 4294967215
Offset: 0

Views

Author

Andreas Rieber, Dec 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n - 81, {n, 0, 40}] (* T. D. Noe, Dec 04 2012 *)

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (161*x - 80)/((x - 1)*(2*x - 1)). (End)
From Elmo R. Oliveira, Nov 11 2023: (Start)
a(n) = 2*a(n-1) + 81 with a(0) = -80.
E.g.f.: exp(2*x) - 81*exp(x). (End)

A225209 a(n) = (392*16^n -1620*8^n +1890*4^n -767)/105.

Original entry on oeis.org

1, 249, 8537, 186073, 3427545, 58664153, 970097881, 15776875737, 254486643929, 4088295982297, 65545039643865, 1049779971687641, 16804957869966553, 268947166998693081, 4303697458594972889, 68863501862374868185
Offset: 1

Views

Author

J. M. Bergot, May 01 2013

Keywords

Comments

Starting at n=1, a cube has an edge=2^(n+1)-3. The beginning cube has a value of 1 and is surrounded by 2^n layers of cubes each valued at 2^n. The sum of all cubes with values of 2^n is a(n).
Indices of primes in this sequence: 3, 10, 12, 21, 37, 70, 102, 201, 961, 1854, ....

Examples

			The first cubes has value 1=a(1).  The second cube has 2 layers of cubes each valued at 2 surrounding the cube of value 1 to give (5^3-1)*2+1=249=a(2).  Next surround by 2^2 layers of cubes each valued at 2^2: (13^3-5^3)*4+249=8537=a(3).  Finally, surround by 2^3 layers of cubes each of value 2^3 to get (29^3-13^3)*8 + 8537 = 186073 = a(4).
		

Programs

  • GAP
    List([1..20], n-> (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105); # G. C. Greubel, Dec 31 2019
  • Magma
    [(392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105: n in [1..20]]; // G. C. Greubel, Dec 31 2019
    
  • Maple
    seq( (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105, n=1..20); # G. C. Greubel, Dec 31 2019
  • Mathematica
    LinearRecurrence[{29,-252,736,-512},{1,249,8537,186073},20] (* Harvey P. Dale, Apr 22 2018 *)
  • PARI
    vector(20, n, (392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105) \\ G. C. Greubel, Dec 31 2019
    
  • Sage
    [(392*2^(4*n) -1620*2^(3*n) +1890*2^(2*n) -767)/105 for n in (1..20)] # G. C. Greubel, Dec 31 2019
    

Formula

a(n) = 29*a(n-1) - 252*a(n-2) + 736*a(n-3) - 512*a(n-4).
a(n) = a(n-1) + 7*2^(4*n-1) - 27*2^(3*n-1) + 27*2^(2*n-1), for n>0.
G.f. x*(1 +220*x +1568*x^2 +512*x^3)/( (1-x)*(1-4*x)*(1-8*x)*(1-16*x) ). - R. J. Mathar, May 09 2013
a(n) = a(n-1) +2^(n-1)*(A036563(n+1)^3 -A036563(n)^3). - R. J. Mathar, May 18 2013

A334164 a(n) is the number of ON-cells in the completed n-th level of a triangular wedge in the hexagonal grid of A151723 (i.e., after 2^k >= n generations of the automaton in A151723 have been computed).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 4, 8, 2, 10, 6, 10, 4, 14, 8, 16, 2, 18, 10, 16, 8, 20, 12, 22, 6, 26, 14, 22, 8, 30, 16, 32, 2, 34, 18, 28, 16, 34, 18, 32, 14, 40, 22, 34, 16, 42, 24, 44, 10, 50, 26, 40, 20, 48, 28, 50, 14, 58, 30, 46, 16, 62, 32, 64
Offset: 1

Views

Author

Hartmut F. W. Hoft, Apr 17 2020

Keywords

Comments

Conjecture 1: Except for a(2^n + 1) = 2, n >= 1, for odd-numbered completed levels a lower bound of the ratio of ON-cells to the length of the level is (2^n + 2)/(3*2^(n+1) + 1) with limit 1/6, determined by the subsequence of levels starting with: 13, 25, 49, 97, 193, 385, 769, 1537, 3073, ..., and the associated ON-cell counts: 4, 6, 10, 18, 34, 66, 130, 258, 514, ..., as listed in the second column of each of the two triangles below.
The ON-cell counts for the indices in each row define a line of slope 1/2. The formula for the indices of levels in row k >= 2 is L(k, i) = 1 + Sum_{j = 0, ..., i} 2^(k-j), 0 <= i <= k - 2, and the formula for the associated numbers of ON-cells is C(k, i) = 2 + Sum_{j = 1..i} 2^(k-1-j), 0 <= i <= k - 2:
Index of the level: L(k, i) number of ON-cells: C(k, i)
k\i 0 1 2 3 4 5 6 k/i 0 1 2 3 4 5 6
2: 5 2: 2
3: 9 13 3: 2 4
4: 17 25 29 4: 2 6 8
5: 33 49 57 61 5: 2 10 14 16
6: 65 97 113 121 125 6: 2 18 26 30 32
7: 129 193 225 241 249 253 7: 2 34 50 58 62 64
8: 257 385 449 481 497 505 509 8: 2 66 98 114 122 126 128
...
The pairs ( L(k, i), C(k, i) ), for 0 <= i <= k-2, define a line of slope 1/2 for each k >= 3.
For triangle L(k, i): column 0 is A000051(n), n >= 2; column 1 is A181565(n), n >= 3; column 2 is A083686(n), n >= 2; columns 3 is A195744(n), n >= 1; column 4 is A206371(n), n >= 2; column 5 is A196657(n), n >= 1; the bounding diagonal is A036563(n), n >= 3.
For triangle C(k, i): column 1 is A052548(n), n >= 1; column 2 is A164094(n), n >= 1.
Conjecture 2: In an even-numbered completed level 2*n the fraction of ON-cells is bounded below by (23 * 2^n - 24)/(2^(n+5) - 36) with limit 23/32, determined by the subsequence of levels starting with: 28, 92, 220, 476, 988, 2012, 4060, ... .
There are 16 numbers less than 1000 that do not occur as the number of ON-cells in a completed level through level 16384: 136, 164, 330, 334, 402, 444, 526, 570, 598, 604, 614, 714, 740, 822, 832, 878.
Sequence A334169 of even-numbered completed levels in which all cells are ON-cells is a subsequence of this sequence.

Crossrefs

Programs

  • Mathematica
    (* a169781[] and support functions are defined in A169781 and create the list nTriangle *)
    a334164[n_] := Module[{k, levels={}}, a169781[n]; For[k=1, k<=n, k++, AppendTo[levels, Count[nTriangle[[k]], 1] - 2]]; levels]/;(n>=3 && IntegerQ[Log[2,n]])
    a334164[64] (* sequence data *)

A366159 Triangle read by rows: T(n, k) = Sum_{i=0..k-2} (-1)^(i+2) * (k-i-1)^n * binomial(k,i).

Original entry on oeis.org

1, 1, 5, 1, 13, 23, 1, 29, 121, 119, 1, 61, 479, 1081, 719, 1, 125, 1681, 6719, 10081, 5039, 1, 253, 5543, 35281, 90719, 100801, 40319, 1, 509, 17641, 168839, 665281, 1239839, 1088641, 362879, 1, 1021, 54959, 763561, 4339439, 12096001, 17539199, 12700801, 3628799
Offset: 2

Views

Author

Michel Marcus, Oct 02 2023

Keywords

Examples

			Triangle begins:
  1;
  1,    5;
  1,   13,    23;
  1,   29,   121,    119;
  1,   61,   479,   1081,     719;
  1,  125,  1681,   6719,   10081,     5039;
  1,  253,  5543,  35281,   90719,   100801,    40319;
  1,  509, 17641, 168839,  665281,  1239839,  1088641,   362879;
  1, 1021, 54959, 763561, 4339439, 12096001, 17539199, 12700801, 3628799;
  ...
		

Crossrefs

Cf. A000012 (col 2), A036563 (col 3), A033312 (right border).
Cf. A105060.

Programs

  • Mathematica
    Table[Sum[(-1)^(i + 2)*(k - i - 1)^n*Binomial[k, i], {i, 0, k - 2} ], {n, 2, 10}, {k, 2, n}] // Flatten (* Michael De Vlieger, Oct 02 2023 *)
  • PARI
    T(n, k) = sum(i=0, k-2, (-1)^(i+2) * (k-i-1)^n * binomial(k,i));
    tabl(nn) = for (n=2, nn, for (k=2, n, print1(T(n,k), ", ")));

A220089 a(n) = 2^n - 243.

Original entry on oeis.org

-242, -241, -239, -235, -227, -211, -179, -115, 13, 269, 781, 1805, 3853, 7949, 16141, 32525, 65293, 130829, 261901, 524045, 1048333, 2096909, 4194061, 8388365, 16776973, 33554189, 67108621, 134217485, 268435213, 536870669, 1073741581, 2147483405, 4294967053
Offset: 0

Views

Author

Andreas Rieber, Dec 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n - 243, {n, 0, 40}] (* T. D. Noe, Dec 04 2012 *)

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (485*x - 242)/((x - 1)*(2*x - 1)). (End)
From Elmo R. Oliveira, Nov 11 2023: (Start)
a(n) = 2*a(n-1) + 243 with a(0) = -242.
E.g.f.: exp(2*x) - 243*exp(x). (End)

A238339 Square number array read by ascending antidiagonals: T(1,k) = 2*k + 1, and T(n,k) = (2*n^(k+1)-n-1)/(n-1) otherwise.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 25, 29, 9, 1, 1, 11, 41, 79, 61, 11, 1, 1, 13, 61, 169, 241, 125, 13, 1, 1, 15, 85, 311, 681, 727, 253, 15, 1, 1, 17, 113, 517, 1561, 2729, 2185, 509, 17, 1, 1, 19, 145, 799, 3109, 7811, 10921, 6559, 1021, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 24 2014

Keywords

Examples

			Square array begins:
1..1...1.....1......1.......1........1........1...
1..3...5.....7......9......11.......13.......15...
1..5..13....29.....61.....125......253......509...
1..7..25....79....241.....727.....2185.....6559...
1..9..41...169....681....2729....10921....43689...
1.11..61...311...1561....7811....39061...195311...
1.13..85...517...3109...18661...111973...671845...
1.15.113...799...5601...39215...274513..1921599...
1.17.145..1169...9361...74897...599185..4793489...
1.19.181..1639..14761..132859..1195741.10761679...
1.21.221..2221..22221..222221..2222221.22222221...
		

Crossrefs

Cf. A238303.

Programs

  • Maple
    T:= proc(n, k); if n=1 then 2*k+1 else (2*n^(k+1)-n-1)/(n-1) fi end:
    seq(seq(T(n-k, k), k=0..n), n=0..10); # Georg Fischer, Oct 14 2023

Formula

T(0,k) = A000012(k) = 1;
T(1,k) = A005408(k) = 2k+1;
T(2,k) = A036563(k+2);
T(3,k) = A058481(k+1);
T(4,k) = A083584(k);
T(5,k) = A137410(k);
T(6,k) = A233325(k);
T(7,k) = A233326(k);
T(8,k) = A233328(k);
T(9,k) = A211866(k+1);
T(10,k) = A165402(k+1);
T(n,0) = A000012(n) = 1;
T(n,1) = A005408(n) = 2*n+1;
T(n,2) = A001844(n) = 2*n^2 + 2*n + 1.

Extensions

Definition amended by Georg Fischer, Oct 14 2023
Previous Showing 61-70 of 72 results. Next