cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A204663 Numbers n such that n!8 + 2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 15, 21, 23, 27, 33, 35, 45, 53, 55, 57, 75, 79, 109, 197, 221, 227, 267, 333, 413, 545, 695, 703, 801, 967, 1029, 1329, 1351, 1475, 1549, 1757, 2173, 2861, 3161, 3167, 3885, 4681, 4965, 6277, 6655, 8477, 9821, 9959, 10269, 17999, 23349, 29347, 29477, 30181, 34133, 36687, 40985, 43395, 47499
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
See also links in A156165.
For odd k, n!k +-2 is even for all n > k and thus cannot be prime.
a(60) > 50000. - Robert Price, Aug 19 2012

Crossrefs

Programs

  • Mathematica
    Select[Range[0,9999], PrimeQ[Product[# - 8i,{i, 0, Floor[(# - 2)/8]}] + 2] &] (* Indranil Ghosh, Mar 13 2017 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)+2)& print1(n","))

Extensions

a(39)-a(59) from Robert Price, Aug 19 2012

A204664 Numbers n such that n!8-2 is prime.

Original entry on oeis.org

4, 5, 7, 9, 11, 15, 17, 25, 27, 33, 47, 59, 63, 77, 87, 89, 93, 95, 107, 119, 127, 133, 139, 193, 201, 217, 269, 291, 369, 373, 435, 445, 669, 803, 831, 859, 907, 1271, 1705, 1743, 1849, 3087, 3189, 3497, 4221, 4475, 5119, 6013, 8023, 9237, 12755, 16501, 16747, 17021, 17309, 20671, 21539, 28377, 33625, 35645, 36831, 54663, 56223, 65299, 66159, 68121, 69339, 70579, 73511, 77745, 94601
Offset: 1

Views

Author

M. F. Hasler, Jan 17 2012

Keywords

Comments

n!8 = A114800(n).
See also links in A156165.
For odd k, n!k +- 2 is even for all n > k and thus cannot be prime.
a(62) > 50000. - Robert Price, Aug 27 2012
The first 10 associated primes: 2, 3, 5, 7, 31, 103, 151, 3823, 16927, 126223. - Robert Price, Mar 10 2017
a(72) > 10^5. - Robert Price, Apr 24 2017

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
    Select[Range[4, 50000], PrimeQ[MultiFactorial[#, 8] - 2] &] (* Robert Price, Mar 10 2017 *)
  • PARI
    for(n=0,9999,isprime(prod(i=0,(n-2)\8,n-8*i)-2)& print1(n","))

Extensions

a(46)-a(61) from Robert Price, Aug 27 2012
a(62)-a(71) from Robert Price, Apr 24 2017

A135726 Primes of the form k!!! - 1 = A007661(k) - 1, k > 0.

Original entry on oeis.org

2, 3, 17, 79, 4188799, 2504902399, 254561089305599, 13106744139423334399999, 8483004771271882804592639999, 706526001186582385898210420541078864497278132689882316799999999, 353401447088718405944982176443380974931403135679741865504466985287679999999999
Offset: 1

Views

Author

M. F. Hasler, Nov 26 2007

Keywords

Comments

Sequence A084438 gives the easier-to-read n-values.
All terms greater than a(3) seem to end in the digit 9, or many 9 digits. a(17) ends with 51 9 digits. - Harvey P. Dale, Nov 28 2019

Examples

			a(4) = 79 = 8*5*2 - 1 = 8!!! - 1 is the 4th prime of that form.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[Times@@Range[n,1,-3],{n,150}]-1,PrimeQ] (* Harvey P. Dale, Nov 28 2019 *)
  • PARI
    A007661(n) = prod(i=1,(n-1)\3,n-=3,n+!n)
    for(n=1,999,if(isprime(A007661(n)-1),print1(A007661(n)-1,",")))

Formula

a(n) = A007661(A084438(n)) - 1. - Elmo R. Oliveira, Feb 25 2025

A100013 Number of prime factors in n!+7 (counted with multiplicity).

Original entry on oeis.org

3, 3, 2, 1, 1, 1, 1, 3, 3, 3, 3, 2, 3, 3, 4, 2, 2, 3, 3, 5, 5, 5, 3, 4, 3, 2, 4, 5, 5, 4, 7, 6, 4, 4, 7, 2, 5, 4, 7, 4, 5, 3, 4, 6, 5, 4, 3, 3, 5, 6, 3, 5, 6, 3, 3, 7, 4, 5, 5, 2, 4, 4, 5, 4, 2, 4, 3, 5, 2, 5, 7, 4, 7, 5, 5, 3, 5, 4, 6, 6, 8, 5
Offset: 0

Views

Author

Jonathan Vos Post, Nov 18 2004

Keywords

Examples

			Example 1!+7 = 2^3 so a(1) = 3.
a(3) = a(4) = a(5) = a(6) = 1 because 3!+1 = 13, 4!+7 = 31, 5!+1 = 127, 6!+7 = 727 and these are all primes. a(11) = a(15) = a(16) = a(25) = a(35) = a(59) = 2 because 11!+7 = 39916807 = 7 * 5702401, 15!+7 = 1307674368007 = 7 * 186810624001, 16!+7 = 20922789888007 = 7 * 2988969984001, 25!+7 = 15511210043330985984000007 = 7 * 2215887149047283712000001, 35!+7 = 10333147966386144929666651337523200000007 = 7 *
1476163995198020704238093048217600000001 and 59!+7 = 138683118545689835737939019720389406345902876772687432540821294940160000000000007 = 7 * 19811874077955690819705574245769915192271839538955347505831613562880000000000001 are all semiprimes.
		

References

  • C. Caldwell and H. Dubner, "Primorial, factorial and multifactorial primes," Math. Spectrum, 26:1 (1993/4) 1-7.

Crossrefs

Extensions

More terms from Sean A. Irvine, Sep 20 2012

A271392 Integers k such that 3*k!!! + 1 is prime where k!!! is A007661(k).

Original entry on oeis.org

2, 4, 5, 8, 9, 15, 16, 23, 27, 32, 34, 35, 38, 40, 46, 54, 57, 83, 87, 97, 162, 165, 223, 235, 282, 488, 503, 575, 673, 823, 857, 885, 965, 1112, 1401, 2288, 2569, 2788, 3133, 3539, 4070, 4654, 5020, 5613, 6720, 7773, 11256, 18023, 22196
Offset: 1

Views

Author

Altug Alkan, Apr 06 2016

Keywords

Comments

Corresponding primes are 7, 13, 31, 241, 487, 87481, 174721, 289027201, 21427701121, ...

Examples

			4 is a term because 3*4!!! + 1 = 13 is prime.
		

Crossrefs

Programs

  • PARI
    is(k) = ispseudoprime(3*prod(i=0, (k-2)\3, k-3*i) + 1); \\ Jinyuan Wang, Jun 09 2021

Extensions

a(47) from Jinyuan Wang, Jun 09 2021
a(48)-a(49) from Michael S. Branicky, Aug 10 2024

A271396 Integers k such that 3*k!!! - 1 is prime where k!!! is A007661(k).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 10, 17, 25, 28, 31, 37, 38, 39, 46, 47, 49, 55, 67, 82, 85, 94, 98, 115, 120, 129, 167, 214, 216, 267, 293, 580, 732, 857, 993, 1012, 1069, 1308, 1430, 2366, 2974, 4017, 4870, 9034, 9061, 9752, 10657, 13847, 25390
Offset: 1

Views

Author

Altug Alkan, Apr 06 2016

Keywords

Comments

Corresponding primes are 2, 2, 5, 11, 29, 53, 83, 239, 839, 628319, 1825823999, 51123071999, ...

Examples

			4 is a term because 3*4!!! - 1 = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,5000],PrimeQ[3Times@@Range[#,1,-3]-1]&] (* The program generates the first 45 terms of the sequence. *) (* Harvey P. Dale, Mar 29 2025 *)
  • PARI
    is(k) = ispseudoprime(3*prod(i=0, (k-2)\3, k-3*i) - 1); \\ Jinyuan Wang, Jun 09 2021

Extensions

a(46)-a(50) from Jinyuan Wang, Jun 09 2021
a(51) from Michael S. Branicky, Aug 09 2024

A110094 Startorial primes.

Original entry on oeis.org

2, 3, 5, 7, 23, 719, 5039, 1451521, 2903041, 5806081, 46448639, 92897281, 371589121, 10032906239, 30098718719, 270888468479, 812665405439, 7313988648961, 21941965946881, 89874292518420479
Offset: 1

Views

Author

Jonathan Vos Post, Sep 04 2005

Keywords

Comments

These are primes of the form A109834 startorials (base 10) +1 or -1. This is by analogy to factorial primes (A002981), superfactorial primes (A073828), hyperfactorial primes, ultrafactorial primes (comment in A046882), subfactorial primes (A100015), double factorial primes (A080778), multifactorial primes (A037083).

Crossrefs

Formula

{a(n)} = {A109834(k)+1 an element of A000040, or A109834(k)-1 an element of A000040, for some k}.

A274386 Triple factorial primes: primes which are within 1 of a triple factorial number.

Original entry on oeis.org

2, 3, 5, 11, 17, 19, 29, 79, 163, 281, 881, 209441, 4188799, 264539521, 2504902399, 72642169601, 254561089305599, 9927882482918401, 26582634158080001, 13106744139423334399999, 141383412854531380076544001, 427380210218181008588800001
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 19 2016

Keywords

Comments

Union of A037082 and A135726.

Examples

			a(7) = 29 = 4*7 + 1 = 7!!! + 1 is the 7th prime of that form.
a(8) = 79 = 2*5*8 - 1 = 8!!! - 1 is the 8th prime of that form.
		

Crossrefs

Programs

  • Magma
    r:=59; I:=[1, 1, 2]; lst1:=[n le 3 select I[n] else (n-1)*Self(n-3): n in [1..r]]; lst2:=[]; for c in [1..r] do a:=lst1[c]; for s in [-1..1 by 2] do p:=a+s; if IsPrime(p) and not p in lst2 then Append(~lst2, p); end if; end for; end for; lst2;
  • Mathematica
    Select[Union@ Flatten@ Map[{# - 1, # + 1} &, Table[With[{q = Quotient[n + 2, 3]}, 3^q q! Binomial[n/3, q]], {n, 0, 58}]], PrimeQ] (* Michael De Vlieger, Jun 21 2016, after Jan Mangaldan at A007661 *)
    Select[Union[Flatten[#+{1,-1}&/@Table[Times@@Range[n,1,-3],{n,100}]]],PrimeQ] (* Harvey P. Dale, Sep 05 2022 *)
Previous Showing 11-18 of 18 results.