A349705 Numbers k such that the concatenation in increasing order of their prime factors, with multiplicity, is congruent to 1 (mod k).
36, 39, 66, 1435, 5714, 6410, 13861, 22564, 27346, 33137, 45542, 79260, 171860, 268218, 442068, 486127, 675423, 2287527, 3710027, 9610766, 14318290, 26293568, 29361702, 49703324, 227358366, 433100023, 442960845, 479174118, 1221238938, 1243718114, 4053362596, 8620689655
Offset: 1
Examples
a(3) = 66 is a term because the concatenation of its prime factors is 2311 and 2311 == 1 (mod 66).
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..39
Programs
-
Maple
filter:= proc(n) local L,t; lcat(map(t -> t[1]$t[2], sort( ifactors(n)[2], (a,b) -> a[1] < b[1]))) mod n = 1; end proc: select(filter, [$1..10^7]);
-
Mathematica
upto=10^5;a={};Do[If[Mod[FromDigits[Flatten[Map[IntegerDigits[ConstantArray[First[#],Last[#]]]&,FactorInteger[k]]]],k]==1,AppendTo[a,k]],{k,upto}];a (* Paolo Xausa, Nov 26 2021 *)
-
Python
from sympy import factorint def ok(k): return int("".join(map(str, factorint(k, multiple=True))))%k == 1 print([k for k in range(2, 10**5) if ok(k)]) # Michael S. Branicky, Nov 26 2021
-
Python
from itertools import count, islice from sympy import factorint def A349705_gen(startvalue=1): # generator of terms >= startvalue for k in count(max(startvalue,1)): c = 0 for d in sorted(factorint(k,multiple=True)): c = (c*10**len(str(d)) + d) % k if c == 1: yield k A349705_list = list(islice(A349705_gen(),10)) # Chai Wah Wu, Feb 28 2022
Extensions
a(28)-a(32) from Martin Ehrenstein, Nov 27 2021
Comments