cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A135126 Numbers such that the digital sums in bases 3, 4, 5 and 6 all are equal.

Original entry on oeis.org

1, 2, 188, 668, 908, 1388, 1628, 2170, 2171, 2830, 2831, 3908, 4330, 4331, 6490, 6491, 8650, 8651, 10390, 10391, 10629, 12792, 12793, 12794, 17110, 17111, 17290, 17291, 25930, 25931, 36312, 36313, 36314, 37812, 37813, 37814, 41532, 41533, 41534
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2007

Keywords

Examples

			a(3)=188, since ds_3(188)=ds_4(188)=ds_5(188)=ds_6(188)=8, where ds_x=digital sum base x.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000], Total[IntegerDigits[#, 3]] == Total[IntegerDigits[#, 4]] ==  Total[IntegerDigits[#, 5]] == Total[IntegerDigits[#, 6]] &] (* G. C. Greubel, Sep 27 2016 *)

A135128 Numbers such that the digital sums in bases 2, 3, 5 and 10 all are equal.

Original entry on oeis.org

1, 12250, 12251, 23230, 23231, 32410, 32411, 45010, 45011, 51130, 51131, 52030, 52031, 54010, 54011, 100053, 100090, 100091, 100305, 102250, 102251, 107002, 107003, 110134, 110170, 110171, 110350, 110351, 110460, 110461, 113050, 113051
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2007

Keywords

Examples

			a(2)=12250 since ds_2(12250 )=ds_3(12250 )=ds_5(12250 )=ds_10(12250 )=10, where ds_x=digital sum base x.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[32000], Total[IntegerDigits[#, 2]] == Total[IntegerDigits[#, 3]] == Total[IntegerDigits[#, 5]] == Total[IntegerDigits[#, 10]] &] (* G. C. Greubel, Sep 28 2016 *)
    Select[Range[120000],Length[Union[Total/@IntegerDigits[#,{2,3,5,10}]]]==1&] (* Harvey P. Dale, Mar 30 2024 *)

A135129 Numbers such that the digital sums in bases 3, 4, 5, 6 and 7 all are equal.

Original entry on oeis.org

1, 2, 1388, 2170, 2171, 2830, 2831, 10390, 10391, 12792, 12793, 12794, 17110, 17111, 17290, 17291, 36312, 36313, 36314, 37814, 41532, 41533, 41534, 50892, 50893, 50894, 52216, 52217, 52395, 56652, 56653, 56654, 95354, 96432, 96433, 96434
Offset: 1

Views

Author

Hieronymus Fischer, Dec 31 2007

Keywords

Examples

			a(3)=1388, since ds_3(1388)=ds_4(1388)=ds_5(1388)=ds_6(1388)=ds_7(1388), where ds_x=digital sum base x.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30000], Total[IntegerDigits[#, 3]] == Total[IntegerDigits[#, 4]] == Total[IntegerDigits[#, 5]] == Total[IntegerDigits[#, 6]] == Total[IntegerDigits[#, 7]] &] (* G. C. Greubel, Sep 28 2016 *)
    Select[Range[100000],Length[Union[Table[Total[IntegerDigits[#,b]],{b,3,7}]]]==1&] (* Harvey P. Dale, Oct 25 2020 *)

A152207 Numbers k such that (sum of base-2 digits of k) = (sum of base-10 digits of k) = 10.

Original entry on oeis.org

3007, 3070, 4015, 6013, 6103, 7102, 8110, 10171, 10234, 11071, 11134, 11215, 11251, 11260, 11503, 11710, 12007, 12025, 12142, 12205, 12214, 12250, 13051, 13231, 14014, 15031, 15211, 15310, 16030, 16102, 16120, 16300, 20143, 20206, 20341
Offset: 1

Views

Author

Zak Seidov, Nov 29 2008

Keywords

Examples

			a(1000) = 3002410_10 = 1011011101000000101010_2, with digit sums = 10 in both cases.
		

Crossrefs

Programs

  • PARI
    isok(n) = (sumdigits(n) == 10) && (hammingweight(n) == 10); \\ Michel Marcus, Oct 15 2013

A212284 First a(n) > 1 whose sum of digits is the same in base 10 as in base n.

Original entry on oeis.org

20, 21, 12, 40, 50, 21, 70, 153, 10, 190, 108, 40, 126, 135, 50, 153, 162, 20, 180, 190, 70, 207, 216, 80, 234, 243, 30, 261, 270, 190, 290, 594, 102, 315, 324, 40, 342, 351, 120, 370, 380, 130, 792, 405, 50, 423, 432, 150, 450, 460, 160, 480, 490, 60, 504
Offset: 2

Views

Author

Stanislav Sykora, May 08 2012

Keywords

Comments

There might exist an n for which there is no solution, in which case a(n) would be set to 0 by convention; however, no such case was found so far. Problem: does it exist?

Examples

			a(12)=108 because 108 is the first number > 1 such that when written in base 10 and in base 12 (i.e., 90), the sum of the expansion digits is the same, namely 9.
		

Crossrefs

Cf. A037308.

A224077 The smallest number n such that (sum of base 2 digits of n) = (sum of base 10 digits of n) for four consecutive integers.

Original entry on oeis.org

3013118, 12101118, 100503038, 100600318, 110231038, 123000318, 131013118, 134213118, 211013118, 222021118, 301002238, 310213118, 331000318, 332101118, 411031038, 501020158, 501112318, 510021118, 511301118, 520005118, 700101118, 1001003518, 1001500158
Offset: 1

Views

Author

Reiner Moewald, Mar 30 2013

Keywords

Comments

If A037308 is split up into maximal subsets of consecutive integers, the size of these subsets is either two or four.

Crossrefs

Cf. A037308.

A305493 A binary encoding of the decimal representation of a number: for any number n >= 0, consider its decimal representation and replace each 9 with "111111111" and each other digit d with a "0" followed by d "1"s and interpret the result as a binary string.

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1023, 6, 13, 27, 55, 111, 223, 447, 895, 1791, 2047, 14, 29, 59, 119, 239, 479, 959, 1919, 3839, 4095, 30, 61, 123, 247, 495, 991, 1983, 3967, 7935, 8191, 62, 125, 251, 503, 1007, 2015
Offset: 0

Views

Author

Rémy Sigrist, Jun 02 2018

Keywords

Comments

This sequence is a permutation of the nonnegative numbers.
The inverse sequence, say b, satisfies b(n) = A001202(n+1) for n = 0..1022, but b(1023) = 19 whereas A001202(1024) = 10.
The first known fixed points are: 0, 1, 65010; they all belong to A037308.
This encoding can be applied to any base b > 1 (when b = 2, we obtain the identity function) as well as to the factorial base and to the primorial base.

Examples

			For n = 1972:
- the digit 1 is replaced by "01",
- the digit 9 is replaced by "111111111",
- the digit 7 is replaced by "01111111",
- the digit 2 is replaced by "011",
- hence we obtain the binary string "0111111111101111111011",
- and a(1972) = 2096123.
		

Crossrefs

Programs

  • Mathematica
    tb=Table[n->PadRight[{0},n+1,1],{n,9}]/.PadRight[{0},10,1]-> PadRight[ {},9,1]; Table[FromDigits[IntegerDigits[n]/.tb//Flatten,2],{n,0,60}] (* Harvey P. Dale, Jul 31 2018 *)
  • PARI
    a(n, base=10) = my (b=[], d=digits(n, base)); for (i=1, #d, if (d[i]!=base-1, b=concat(b, 0)); b=concat(b, vector(d[i], k, 1))); fromdigits(b, 2)
    /* inverse */ b(n, base=10) = my (v=0, p=1); while (n, my (d = min(valuation(n+1, 2), base-1)); v += p * d; n \= 2^min(base-1, 1+d); p *= base); v

Formula

A000120(a(n)) = A007953(n).
a(A051885(k)) = 2^k - 1 for any k >= 0.
a(A002275(k)) = A002450(k) for any k >= 0.
a(10 * n) = 2 * a(n).

A281299 Primes p whose binary representation p_2 is the decimal representation of a prime q; and also the sum of the decimal digits of p equals the sum of the digits of p_2.

Original entry on oeis.org

5011, 7001, 11251, 22501, 32303, 32411, 90031, 101107, 104123, 108011, 111323, 121343, 122131, 124001, 125101, 141023, 224011, 233021, 235003, 241141, 321203, 324011, 421303, 432031, 442201, 510331, 511213, 520411, 801011, 1000183, 1000541, 1001191, 1005223, 1006231
Offset: 1

Views

Author

K. D. Bajpai, Jan 19 2017

Keywords

Comments

Intersection of A037308 and A065720.

Examples

			a(1) = 5011 is a prime;
5011_2 = 1001110010011_10 is a prime;
5 + 0 + 1 + 1 = 7;
1 + 0 + 0 + 1 + 1 + 1 + 0 + 0 + 1 + 0 + 0 + 1 + 1 = 7; both the digit sums are equal.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PrimeQ[FromDigits[IntegerDigits[#, 2]]] && Plus @@ IntegerDigits[#] == Plus @@ IntegerDigits[FromDigits[IntegerDigits[#, 2]]] &]
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    is(n) = ispseudoprime(n) && ispseudoprime(eva(binary(n))) && sumdigits(n)==sumdigits(eva(binary(n))) \\ Felix Fröhlich, Jan 19 2017
Previous Showing 11-18 of 18 results.