cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 124 results. Next

A327899 Number of set partitions of {1..n} with equal block sizes and equal block sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 6, 3, 2, 1, 63, 1, 2, 317, 657, 1, 4333, 1, 9609
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2019

Keywords

Examples

			The a(8) = 6 set partitions:
     {{1,2,3,4,5,6,7,8}}
    {{1,2,7,8},{3,4,5,6}}
    {{1,3,6,8},{2,4,5,7}}
    {{1,4,5,8},{2,3,6,7}}
    {{1,4,6,7},{2,3,5,8}}
  {{1,8},{2,7},{3,6},{4,5}}
		

Crossrefs

Set partitions with equal block-sizes are A038041.
Set partitions with equal block-sums are A035470.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],And[SameQ@@Length/@#,SameQ@@Total/@#]&]],{n,0,8}]

A327900 Nonprime squarefree numbers whose prime indices all have the same Omega (number of prime factors counted with multiplicity).

Original entry on oeis.org

1, 15, 33, 51, 55, 85, 91, 93, 123, 155, 161, 165, 177, 187, 201, 203, 205, 249, 255, 295, 299, 301, 327, 329, 335, 341, 377, 381, 415, 451, 465, 471, 511, 527, 537, 545, 553, 559, 561, 573, 611, 615, 633, 635, 649, 667, 679, 697, 703, 707, 723, 737, 785, 831
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
   15: {2,3}
   33: {2,5}
   51: {2,7}
   55: {3,5}
   85: {3,7}
   91: {4,6}
   93: {2,11}
  123: {2,13}
  155: {3,11}
  161: {4,9}
  165: {2,3,5}
  177: {2,17}
  187: {5,7}
  201: {2,19}
  203: {4,10}
  205: {3,13}
  249: {2,23}
  255: {2,3,7}
  295: {3,17}
		

Crossrefs

The case including primes and nonsquarefree numbers is A320324.
The version for sum of prime indices is A327901.
The version for mean of prime indices is A327902.

Programs

  • Mathematica
    Select[Range[1000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@PrimeOmega/@PrimePi/@First/@FactorInteger[#]&]

A327901 Nonprime squarefree numbers whose prime indices all have the same sum of prime indices (A056239).

Original entry on oeis.org

1, 35, 143, 209, 247, 391, 493, 629, 667, 851, 901, 1073, 1219, 1333, 1457, 1537, 1891, 1961, 2021, 2201, 2623, 2717, 2759, 2867, 2993, 3053, 3239, 3337, 3827, 3977, 4061, 4183, 4223, 4331, 4387, 4633, 5429, 5633, 5767, 5959, 6157, 6191, 6319, 7081, 7093, 7519
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
    35: {3,4}
   143: {5,6}
   209: {5,8}
   247: {6,8}
   391: {7,9}
   493: {7,10}
   629: {7,12}
   667: {9,10}
   851: {9,12}
   901: {7,16}
  1073: {10,12}
  1219: {9,16}
  1333: {11,14}
  1457: {11,15}
  1537: {10,16}
  1891: {11,18}
  1961: {12,16}
  2021: {14,15}
  2201: {11,20}
		

Crossrefs

The version including primes and nonsquarefree numbers is A326534.
The version for number of prime indices is A327900.
The version for mean of prime indices is A327902.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@Total/@primeMS/@primeMS[#]&];

A382304 MM-numbers of multiset partitions into sets with a common sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 13, 16, 17, 25, 27, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 81, 83, 101, 109, 113, 121, 125, 127, 128, 137, 139, 143, 149, 157, 163, 167, 169, 179, 181, 191, 199, 211, 233, 241, 243, 256, 257, 269, 271, 277, 283, 289, 293, 313, 317
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2025

Keywords

Comments

Also products of prime numbers of squarefree index with a common sum of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices of prime indices begin:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   8: {{},{},{}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  16: {{},{},{},{}}
  17: {{4}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  32: {{},{},{},{},{}}
		

Crossrefs

Set partitions of this type are counted by A035470.
Twice-partitions of this type are counted by A279788.
For just strict blocks we have A302478.
For just a common sum we have A326534, distinct sums A326535.
Factorizations of this type are counted by A382080.
For distinct instead of equal sums we have A382201.
For constant instead of strict blocks we have A382215.
Normal multiset partitions of this type are counted by A382429.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A058891 counts set-systems, covering A003465, connected A323818.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@UnsameQ@@@prix/@prix[#]&]

Formula

Equals A302478 /\ A326534.

A133118 Number of partitions of n-set with 3 block sizes.

Original entry on oeis.org

60, 315, 2268, 14742, 72180, 464640, 2676366, 16400098, 94209206, 673282610, 4095231104, 29371828846, 197547348216, 1513916607683, 10904464442572, 87070803499372, 673555061736062, 5718121102062336, 47028289679340734, 418812093667530755, 3680961843042545490, 34161428275433710485
Offset: 6

Views

Author

Vladeta Jovovic, Sep 18 2007

Keywords

Crossrefs

Column k=3 of A208437.

Programs

  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Prepend[Table[i, {j}], n - i*j]]/j!*b[n - i*j, i - 1]*If[j == 0, 1, x], {j, 0, n/i}]]];
    a[n_] := Coefficient[b[n, n], x, 3];
    Array[a, 22, 6] (* Jean-François Alcover, May 24 2019, after Alois P. Heinz in A208437 *)

Formula

We obtain e.g.f. for number of partitions of n-set with m block sizes if we substitute x(i) with -Sum_{k>0} (1-exp(x^k/k!))^i in cycle index Z(S(m); x(1),x(2),...,x(n)) of symmetric group S(m) of degree m.

Extensions

More terms from Max Alekseyev, Jun 17 2011

A133119 Number of permutations of [n] with 3 cycle lengths.

Original entry on oeis.org

120, 1050, 12712, 141876, 1418400, 17061660, 212254548, 2735287698, 37354035628, 581350330470, 8895742806480, 151305163230480, 2659183039338192, 50112909523522476, 976443721325014300, 20413628375979803370, 434137453618439716068
Offset: 6

Views

Author

Vladeta Jovovic, Sep 18 2007

Keywords

Crossrefs

Column k=3 of A218868.

Formula

We obtain e.g.f. for number of permutations of [n] with m cycle lengths if we substitute x(i) with -Sum_{k>0} ((1-exp(x^k/k))^i in cycle index Z(S(m); x(1),x(2),..,x(m)) of symmetric group S(m) of degree m.

Extensions

More terms from Max Alekseyev, Feb 08 2010

A326374 Irregular triangle read by rows where T(n,k) is the number of (d + 1)-uniform hypertrees spanning n + 1 vertices, where d = A027750(n,k).

Original entry on oeis.org

1, 3, 1, 16, 1, 125, 15, 1, 1296, 1, 16807, 735, 140, 1, 262144, 1, 4782969, 76545, 1890, 1, 100000000, 112000, 1, 2357947691, 13835745, 33264, 1, 61917364224, 1, 1792160394037, 3859590735, 270670400, 35135100, 720720, 1, 56693912375296, 1, 1946195068359375
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2019

Keywords

Comments

A hypertree is a connected hypergraph of density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices. A hypergraph is k-uniform if its edges all have size k. The span of a hypertree is the union of its edges.

Examples

			Triangle begins:
           1
           3          1
          16          1
         125         15          1
        1296          1
       16807        735        140          1
      262144          1
     4782969      76545       1890          1
   100000000     112000          1
  2357947691   13835745      33264          1
The T(4,2) = 15 hypertrees:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
		

Crossrefs

Programs

  • Maple
    T:= n-> seq(n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1), d=numtheory[divisors](n)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    Table[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{n,10},{d,Divisors[n]}]

Formula

T(n, k) = n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1), where d = A027750(n, k).

Extensions

Edited by Peter Munn, Mar 05 2025

A327903 Number of set-systems covering n vertices where every edge has a different sum.

Original entry on oeis.org

1, 1, 5, 77, 7369, 10561753, 839653402893, 15924566366443524837, 315320784127456186118309342769, 29238175285109256786706269143580213236526609, 59347643832090275881798554403880633753161146711444051797893301
Offset: 0

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A set-system is a set of nonempty sets. It is covering if there are no isolated (uncovered) vertices.

Examples

			The a(3) = 77 set-systems:
  123  1-23    1-2-3      1-2-3-13      1-2-3-13-23     1-2-3-13-23-123
       2-13    1-2-13     1-2-3-23      1-2-12-13-23    1-2-12-13-23-123
       1-123   1-2-23     1-2-12-13     1-2-3-13-123
       12-13   1-3-23     1-2-12-23     1-2-3-23-123
       12-23   2-3-13     1-2-13-23     1-2-12-13-123
       13-23   1-12-13    1-2-3-123     1-2-12-23-123
       2-123   1-12-23    1-3-13-23     1-2-13-23-123
       3-123   1-13-23    2-3-13-23     1-3-13-23-123
       12-123  1-2-123    1-12-13-23    2-3-13-23-123
       13-123  1-3-123    1-2-12-123    1-12-13-23-123
       23-123  2-12-13    1-2-13-123    2-12-13-23-123
               2-12-23    1-2-23-123
               2-13-23    1-3-13-123
               2-3-123    1-3-23-123
               3-13-23    2-12-13-23
               1-12-123   2-3-13-123
               1-13-123   2-3-23-123
               12-13-23   1-12-13-123
               1-23-123   1-12-23-123
               2-12-123   1-13-23-123
               2-13-123   2-12-13-123
               2-23-123   2-12-23-123
               3-13-123   2-13-23-123
               3-23-123   3-13-23-123
               12-13-123  12-13-23-123
               12-23-123
               13-23-123
		

Crossrefs

The antichain case is A326572.
The graphical case is A327904.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    qes[n_]:=Select[stableSets[Subsets[Range[n],{1,n}],Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[qes[n]],{n,0,4}]
  • PARI
    \\ by inclusion/exclusion on covered vertices.
    C(v)={my(u=Vecrev(-1 + prod(k=1, #v, 1 + x^v[k]))); prod(i=1, #u, 1 + u[i])}
    a(n)={my(s=0); forsubset(n, v, s += (-1)^(n-#v)*C(v)); s} \\ Andrew Howroyd, Oct 02 2019

Extensions

Terms a(4) and beyond from Andrew Howroyd, Oct 02 2019

A327904 Number of labeled simple graphs with vertices {1..n} such that every edge has a different sum.

Original entry on oeis.org

1, 1, 2, 8, 48, 432, 5184, 82944, 1658880, 41472000, 1244160000, 44789760000, 1881169920000, 92177326080000, 5161930260480000, 330363536670720000, 23786174640291840000, 1926680145863639040000, 173401213127727513600000, 17340121312772751360000000
Offset: 0

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Examples

			The graph with edge-set {{1,2},{1,3},{1,4},{2,3}}, which looks like a triangle with a tail, has edges {1,4} and {2,3} with equal sum, so is not counted under a(4).
		

Crossrefs

The generalization to antichains is A326030.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          a(n-1)*ceil(n/2)*ceil(n/2+1/4))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 03 2019
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    qes[n_]:=stableSets[Subsets[Range[n],{2}],Total[#1]==Total[#2]&];
    Table[Length[qes[n]],{n,0,5}]
  • PARI
    a(n) = {prod(k=1, 2*n+1, ceil(k/4))} \\ Andrew Howroyd, Oct 02 2019

Formula

a(n) = Product_{k=1..2*n+1} ceiling(k/4). - Andrew Howroyd, Oct 02 2019

Extensions

Terms a(8) and beyond from Andrew Howroyd, Oct 02 2019

A336138 Number of set partitions of the binary indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 5, 2, 4, 5, 12, 1, 2, 2, 5, 2, 5, 4, 13, 2, 4, 5, 13, 5, 13, 13, 43, 1, 2, 2, 5, 2, 5, 5, 13, 2, 5, 4, 14, 5, 13, 14, 42, 2, 4, 5, 13, 5, 14, 13, 43, 5, 13, 14, 45, 14, 44, 44, 160, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 4, 13
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2020

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(n) set partitions for n = 3, 7, 11, 15, 23:
  {12}    {123}      {124}      {1234}        {1235}
  {1}{2}  {1}{23}    {1}{24}    {1}{234}      {1}{235}
          {13}{2}    {12}{4}    {12}{34}      {12}{35}
          {1}{2}{3}  {14}{2}    {123}{4}      {123}{5}
                     {1}{2}{4}  {124}{3}      {125}{3}
                                {13}{24}      {13}{25}
                                {134}{2}      {135}{2}
                                {1}{2}{34}    {15}{23}
                                {1}{23}{4}    {1}{2}{35}
                                {1}{24}{3}    {1}{25}{3}
                                {14}{2}{3}    {13}{2}{5}
                                {1}{2}{3}{4}  {15}{2}{3}
                                              {1}{2}{3}{5}
		

Crossrefs

The version for twice-partitions is A271619.
The version for partitions of partitions is (also) A271619.
These set partitions are counted by A275780.
The version for factorizations is A321469.
The version for normal multiset partitions is A326519.
The version for equal block-sums is A336137.
Set partitions with distinct block-lengths are A007837.
Set partitions of binary indices are A050315.
Twice-partitions with equal sums are A279787.
Partitions of partitions with equal sums are A305551.
Normal multiset partitions with equal block-lengths are A317583.
Multiset partitions with distinct block-sums are ranked by A326535.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[bpe[n]],UnsameQ@@Total/@#&]],{n,0,100}]
Previous Showing 101-110 of 124 results. Next