cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A100212 Expansion of 4*x^4*(2 + x)/(1 - 2*x + 2*x^2 - 4*x^4 + 8*x^5 - 8*x^6).

Original entry on oeis.org

0, 0, 0, 0, 8, 20, 24, 8, 0, 0, 0, 0, 128, 320, 384, 128, 0, 0, 0, 0, 2048, 5120, 6144, 2048, 0, 0, 0, 0, 32768, 81920, 98304, 32768, 0, 0, 0, 0, 524288, 1310720, 1572864, 524288, 0, 0, 0, 0, 8388608, 20971520, 25165824, 8388608, 0, 0, 0, 0, 134217728, 335544320
Offset: 0

Views

Author

Creighton Dement, Nov 08 2004

Keywords

Comments

a(n) = 0 iff n == {0, 1, 2 or 3} (mod 8). - Robert G. Wilson v, Nov 12 2004

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0] cat Coefficients(R!( 4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6) )); // G. C. Greubel, Apr 01 2024
    
  • Mathematica
    CoefficientList[ Series[4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6), {x, 0, 55}], x] (* Robert G. Wilson v, Nov 12 2004 *)
    LinearRecurrence[{2,-2,0,4,-8,8},{0,0,0,0,8,20},60] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    Vec(4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • SageMath
    def A100212_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6) ).list()
    A100212_list(60) # G. C. Greubel, Apr 01 2024

Formula

a(8n+4) = a(8n+7) = 2^(4n+3), a(8n+5) = (5/2)*2^(4n+3), a(8n+6) = 3*2^(4n+3), a(8n+8) = 0, a(8n+9) = 0, a(8n+10) = 0, a(8n+11) = 0.
(a(n)) = negseq(.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=8, a(5)=20, a(n) = 2*a(n-1) - 2*a(n-2) + 4*a(n-4) - 8*a(n-5) + 8*a(n-6). - Harvey P. Dale, Oct 10 2012

Extensions

More terms from Robert G. Wilson v, Nov 12 2004

A130668 Diagonal of A129819.

Original entry on oeis.org

0, 0, 1, -2, 5, -11, 23, -48, 102, -220, 476, -1024, 2184, -4624, 9744, -20480, 42976, -90048, 188352, -393216, 819328, -1704192, 3539200, -7340032, 15203840, -31456256, 65010688, -134217728, 276826112, -570429440, 1174409216
Offset: 0

Views

Author

Paul Curtz, Jun 27 2007

Keywords

Comments

This sequence is connected to A124072. To see this, change the sign of every negative term and consider the differences of every line. Hence for the second line, and following lines, the four terms form periodic sequences:
0 1 0 1 0
1 0 0 1 1
1 0 1 2 1
1 1 3 3 1
2 4 6 4 2
6 10 10 6 6
16 20 16 12 16
36 36 28 28 36
72 64 56 64 72
136 120 120 136 136
256 240 256 272 256.
The lines are connected as seen by the examples: (3rd line connected to 2nd, from right to left) 1+1=2, 1+0=1, 0+0=0, 0+1=1; (11th line connected to 10th) 136+136=272, 136+120=256, 120+120=240, 120+136=256.
The 4 columns are almost known (must the first line be suppressed?): A038503 (without the first 1), A000749 (without the first 0), A038505, A038504. Like the present sequence, every sequence of A124072 beginning with a negative number (-2, -11, ...) is a "twisted" sequence (see A129339 comments, A129961 and the present 4 columns). Periodic with period 2^n.
Inverse binomial transform of A129819. - R. J. Mathar, Feb 25 2009

Programs

  • GAP
    a:=[-2,5,-11,23];; for n in [5..30] do a[n]:=-6*a[n-1]+-14*a[n-2] -16*a[n-3]-8*a[n-4]; od; Concatenation([0,0,1], a); # G. C. Greubel, Mar 24 2019
  • Magma
    I:=[-2,5,-11,23]; [0,0,1] cat [n le 4 select I[n] else -6*Self(n-1) - 14*Self(n-2)-16*Self(n-3)-8*Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 24 2019
    
  • Mathematica
    gf = x^2*(1+x)*(1+3*x+4*x^2+3*x^3)/((1+2*x+2*x^2)*(1+2*x)^2); CoefficientList[Series[gf, {x, 0, 30}], x] (* Jean-François Alcover, Dec 16 2014, after R. J. Mathar *)
    Join[{0, 0, 1}, LinearRecurrence[{-6,-14,-16,-8}, {-2,5,-11,23}, 30]] (* Jean-François Alcover, Feb 15 2016 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(x^2*(1+x)*(1+3*x+4*x^2+3*x^3 )/((1+2*x +2*x^2)*(1+2*x)^2))) \\ G. C. Greubel, Mar 24 2019
    
  • Sage
    (x^2*(1+x)*(1+3*x+4*x^2+3*x^3)/((1+2*x+2*x^2)*(1+2*x)^2 )).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 24 2019
    

Formula

From R. J. Mathar, Feb 25 2009: (Start)
G.f.: x^2*(1+x)*(1 + 3*x + 4*x^2 + 3*x^3)/((1 + 2*x + 2*x^2)*(1+2*x)^2).
a(n) = ((-1)^n*A001787(n+1) - 4*A108520(n) + 4*A122803(n))/32, n > 2. (End)
a(n) = -6*a(n-1) - 14*a(n-2) - 16*a(n-3) - 8*a(n-4) for n >= 7. - G. C. Greubel, Mar 24 2019

Extensions

Extended by R. J. Mathar, Feb 25 2009

A133212 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3; a(0) = 1, a(1) = 4, a(2) = 12, a(3) = 32.

Original entry on oeis.org

1, 4, 12, 32, 72, 144, 272, 512, 992, 1984, 4032, 8192, 16512, 33024, 65792, 131072, 261632, 523264, 1047552, 2097152, 4196352, 8392704, 16781312, 33554432, 67100672, 134201344, 268419072, 536870912, 1073774592, 2147549184
Offset: 0

Views

Author

Paul Curtz, Oct 11 2007

Keywords

Comments

Conjecture: a(n) = 2*A038503(n+3) if n > 0. - R. J. Mathar, Oct 23 2007

Crossrefs

Programs

  • Maple
    A133212 := proc(n) option remember ; if n <= 3 then op(n+1,[1,4,12,32]) ; else 4*A133212(n-1)-6*A133212(n-2)+4*A133212(n-3) ; fi ; end: seq(A133212(n),n=0..50) ; # R. J. Mathar, Oct 23 2007
  • Mathematica
    Join[{1},LinearRecurrence[{4, -6, 4},{4, 12, 32},29]] (* Ray Chandler, Sep 23 2015 *)

Formula

Sequence is identical to its fourth differences.
From R. J. Mathar, Nov 18 2007: (Start)
G.f.: -(1 + 2*x^2 + 4*x^3)/((2*x - 1)*(2*x^2 - 2*x + 1)). - [Corrected by Georg Fischer, May 12 2019]
a(n) = -2*(-1)^n*A009116(n)+3*2^n. (End)
E.g.f.: exp(x)*(3*cosh(x) - 2*(cos(x) + sin(x)) + 5*sinh(x)). - Stefano Spezia, Jan 03 2023

Extensions

More terms from R. J. Mathar, Oct 23 2007

A137171 Interleaved reading of A000749 and its first to third differences.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 1, 4, 6, 4, 2, 10, 10, 6, 6, 20, 16, 12, 16, 36, 28, 28, 36, 64, 56, 64, 72, 120, 120, 136, 136, 240, 256, 272, 256, 496, 528, 528, 496, 1024, 1056, 1024, 992, 2080, 2080, 2016, 2016, 4160, 4096, 4032, 4096, 8256, 8128, 8128
Offset: 0

Views

Author

Paul Curtz, May 11 2008

Keywords

Comments

A000749 is identical to its fourth differences, which implies that the 2nd differences equal the 5th, the 3rd differences the 6th and so on and implies that each of the sequences of these differences obeys the recurrence a(n)=4a(n-1)-6a(n-2)+4a(n-3), n > 3.
The table containing A000749 and its first differences (essentially A038505), 2nd differences (A038504) and 3rd differences (A038503) as the 4 rows is
O, 0, 0, 1, 4, 10, 20, 36, 64, ...
0, 0, 1, 3, 6, 10, 16, 28, 56, ...
0, 1, 2, 3, 4, 6, 12, 28, 64, ...
1, 1, 1, 1, 2, 6, 16, 36, 72, ...
Columns sums are 1, 2, 4, 8, 16, 32 ... = 2^n =A000079. The sequence reads this table column by column.

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0, 1},LinearRecurrence[{0, 0, 0, 4, 0, 0, 0, -6, 0, 0, 0, 4},{0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 1},59]] (* Ray Chandler, Sep 23 2015 *)

Extensions

Edited by R. J. Mathar, Jun 28 2008

A098179 Expansion of (1-3*x+3*x^2)/(1-5*x+10*x^2-10*x^3+4*x^4).

Original entry on oeis.org

1, 2, 3, 5, 11, 27, 63, 135, 271, 527, 1023, 2015, 4031, 8127, 16383, 32895, 65791, 131327, 262143, 523775, 1047551, 2096127, 4194303, 8390655, 16781311, 33558527, 67108863, 134209535, 268419071, 536854527, 1073741823, 2147516415
Offset: 0

Views

Author

Paul Barry, Aug 30 2004

Keywords

Comments

Partial sums of A038503. Binomial transform of A098178.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-4},{1,2,3,5},40] (* or *) CoefficientList[ Series[(1-3 x+3 x^2)/(1-5 x+10 x^2-10 x^3+4 x^4),{x,0,40}],x] (* Harvey P. Dale, Oct 06 2011 *)

Formula

a(n) = 2^n+2^(n/2)cos(pi*n/4)-1; a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-4a(n-4).

A132402 Binomial transform of A004524 starting at 1.

Original entry on oeis.org

1, 3, 7, 15, 32, 70, 156, 348, 768, 1672, 3600, 7696, 16384, 34784, 73664, 155584, 327680, 688256, 1442048, 3014912, 6291456, 13106688, 27261952, 56622080, 117440512, 243271680, 503320576, 1040191488, 2147483648
Offset: 0

Views

Author

Paul Curtz, Nov 12 2007

Keywords

Comments

Twisted numbers. b(n)=a(n)-2^n=0, 1, 3, 7, 16, 38, 92, 220, 512, 1160, 2576, twisted numbers. b(n+1)-2b(n)=1, 1, 1, 2, 6, 16, 36, 72, 136, 256.

Programs

  • Mathematica
    LinearRecurrence[{6,-14,16,-8},{1,3,7,15},30] (* Harvey P. Dale, Mar 30 2022 *)

Formula

a(n+1)-2a(n) = 1, 1, 1, 2, 6, 16, 36, 72, 136, 256 = essentially A038503.
O.g.f.: (1-x)^3/[(1-2x+2x^2)(-1+2x)^2]. a(n)=6*a(n-1)-14*a(n-2)+16*a(n-3)-8*a(n-4). - R. J. Mathar, Apr 02 2008
4*a(n) = (n+4)*2^n+2*A009545(n). - R. J. Mathar, Nov 01 2021

Extensions

More terms from R. J. Mathar, Apr 02 2008
Previous Showing 21-26 of 26 results.