cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A373824 Sorted positions of first appearances in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 11, 13, 29, 33, 45, 51, 57, 59, 69, 75, 105, 129, 211, 227, 301, 313, 321, 341, 407, 413, 447, 459, 537, 679, 709, 767, 1113, 1301, 1405, 1411, 1429, 1439, 1709, 1829, 1923, 2491, 2543, 2791, 2865, 3301, 3471, 3641, 4199, 4611, 5181, 5231, 6345, 6555
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Sorted positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3,...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted firsts of A373819 (run-lengths of A251092).
The unsorted version is A373825.
For antiruns we have A373826, unsorted A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths, run-lengths of A027833.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000],PrimeQ],#1+2==#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A121069 Conjectured sequence for jumping champions greater than 1 (most common prime gaps up to x, for some x).

Original entry on oeis.org

2, 4, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070
Offset: 1

Views

Author

Lekraj Beedassy, Aug 10 2006

Keywords

Comments

If n > 2, then a(n) = product of n-1 consecutive distinct prime divisors. E.g. a(5)=210, the product of 4 consecutive and distinct prime divisors, 2,3,5,7. - Enoch Haga, Dec 08 2007
From Bill McEachen, Jul 10 2022: (Start)
Rather than have code merely generating the conjectured values, one can compare values of sequence terms at the same position n. Specifically, locate new maximums where (p,p+even) are both prime, where even=2,4,6,8,... and the datum set is taken with even=4. A new maximum implies a new jumping champion.
Doing this produces the terms 2,4,6,30,210,2310,30030,.... Looking at the plot of a(n) ratio for gap=2/gap=6, the value changes VERY slowly, and is 2.14 after 50 million terms (one can see the trend via Plot 2 of A001359 vs A023201 (3rd option seqA/seqB vs n). The ratio for gap=4/gap=2 ~ 1, implying they are equally frequent. (End)

Crossrefs

Programs

  • Mathematica
    2,4,Table[Product[Prime[k],{k,1,n-1}],{n,3,30}]
  • PARI
    print1("2, 4");t=2;forprime(p=3,97,print1(", ",t*=p)) \\ Charles R Greathouse IV, Jun 11 2011

Formula

Consists of 4 and the primorials (A002110).
a(1) = 2, a(2) = 4, a(3) = 6, a(n+1)/a(n) = Prime[n] for n>2.

Extensions

Corrected and extended by Alexander Adamchuk, Aug 11 2006
Definition corrected and clarified by Jonathan Sondow, Aug 16 2011

A179067 Orders of consecutive clusters of twin primes.

Original entry on oeis.org

1, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Franz Vrabec, Jun 27 2010

Keywords

Comments

For k>=1, 2k+4 consecutive primes P1, P2, ..., P2k+4 defining a cluster of twin primes of order k iff P2-P1 <> 2, P4-P3 = P6-P5 = ... = P2k+2 - P2k+1 = 2, P2k+4 - P2k+3 <> 2.
Also the lengths of maximal runs of terms differing by 2 in A029707 (leading index of twin primes), complement A049579. - Gus Wiseman, Dec 05 2024

Examples

			The twin prime cluster ((101,103),(107,109)) of order k=2 stems from the 2k+4 = 8 consecutive primes (89, 97, 101, 103, 107, 109, 113, 127) because 97-89 <> 2, 103-101 = 109-107 = 2, 127-113 <> 2.
From _Gus Wiseman_, Dec 05 2024: (Start)
The leading indices of twin primes are:
  2, 3, 5, 7, 10, 13, 17, 20, 26, 28, 33, 35, 41, 43, 45, 49, 52, ...
with maximal runs of terms differing by 2:
  {2}, {3,5,7}, {10}, {13}, {17}, {20}, {26,28}, {33,35}, {41,43,45}, {49}, {52}, ...
with lengths a(n).
(End)
		

Crossrefs

Cf. A077800.
A000040 lists the primes, differences A001223 (run-lengths A333254, A373821).
A006512 gives the greater of twin primes.
A029707 gives the leading index of twin primes, complement A049579.
A038664 finds the first prime gap of length 2n.
A046933 counts composite numbers between primes.

Programs

  • Maple
    R:= 1: count:= 1: m:= 0:
    q:= 5: state:= 1:
    while count < 100 do
     p:= nextprime(q);
     if state = 1 then
        if p-q = 2 then state:= 2; m:= m+1;
        else
          if m > 0 then R:= R,m; count:= count+1; fi;
          m:= 0
        fi
     else state:= 1;
     fi;
     q:= p
    od:
    R; # Robert Israel, Feb 07 2023
  • Mathematica
    Length/@Split[Select[Range[2,100],Prime[#+1]-Prime[#]==2&],#2==#1+2&] (* Gus Wiseman, Dec 05 2024 *)
  • PARI
    a(n)={my(o,P,L=vector(3));n++;forprime(p=o=3,,L=concat(L[2..3],-o+o=p);L[3]==2||next;L[1]==2&&(P=concat(P,p))&&next;n--||return(#P);P=[p])} \\ M. F. Hasler, May 04 2015

Extensions

More terms from M. F. Hasler, May 04 2015

A086977 Increasing peaks in the prime gap sequence A000230.

Original entry on oeis.org

199, 1831, 5591, 30593, 81463, 82073, 162143, 173359, 404597, 542603, 544279, 1100977, 1444309, 2238823, 5845193, 6752623, 6958667, 11981443, 13626257, 49269581, 83751121, 147684137, 166726367, 378043979, 895858039, 1872851947
Offset: 1

Views

Author

Harry J. Smith, Jul 26 2003

Keywords

Comments

a(n) is the smaller of the two consecutive primes having a late occurring prime gap g = p_k+1 - p_k. All even gaps smaller than g occur at a smaller prime. Also, the next even gap g+2 also occurs earlier.

Examples

			1831 is in this list because the next prime is 1847, giving a prime gap of 16. All even gaps less than 16 occur before this (for smaller primes) and the next even gap, 18, also occurs earlier.
		

References

  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 144.

Crossrefs

Programs

  • Mathematica
    lst={};b=max=2;Do[a=2;While[NextPrime@a-a!=2n,a=NextPrime@a];If[a=max,AppendTo[lst,b]];b=a;If[b>max,max=b],{n,40}];lst (* Giorgos Kalogeropoulos, Aug 18 2021 *)

A086980 Late occurring prime gaps in the prime gap sequence A001223.

Original entry on oeis.org

12, 16, 32, 38, 46, 56, 66, 70, 74, 80, 88, 94, 102, 108, 116, 124, 134, 144, 150, 158, 166, 186, 194, 200, 228, 256, 264, 278, 294, 298, 316, 328, 334, 362, 370, 388, 422, 436, 442, 452, 466, 472, 482, 488, 510, 520, 536, 568, 576, 580, 590, 608, 628, 632
Offset: 1

Views

Author

Harry J. Smith, Jul 26 2003

Keywords

Comments

a(n) is the gap g = p_k+1 - p_k between consecutive primes with all even gaps smaller than g occurring at a smaller prime and the next even gap g+2 also occurring earlier.

Examples

			16 is in this list because the first time a prime gap of 16 occurs is between consecutive primes 1831 and 1847. All even prime gaps less than 16 occur for a smaller prime. The next even prime gap of 18 also occurs earlier.
		

References

  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 144.

Crossrefs

A261525 a(n) = smallest m such that A031131(m) = 2*n.

Original entry on oeis.org

2, 3, 9, 8, 15, 23, 47, 29, 66, 114, 46, 220, 188, 258, 640, 375, 480, 589, 216, 326, 367, 1006, 738, 1183, 1985, 1847, 1662, 2224, 3731, 3861, 3561, 2699, 3792, 4521, 2225, 12541, 3384, 12761, 3385, 4058, 10228, 15747, 15927, 14357, 18280, 19025, 14123
Offset: 2

Views

Author

Reinhard Zumkeller, Aug 23 2015

Keywords

Comments

A031131(a(n)) = 2*n and A031131(m) != 2*n for m < a(n);
A046931(n) = A000040(a(n)+1);
a(n)-th and (a(n)+2)-nd primes are the first pair that differ by 2*n;
conjecture: sequence is defined for all n > 1.

Crossrefs

Programs

  • Haskell
    a261525 = (+ 1) . fromJust . (`elemIndex` a031131_list) . (* 2)

A356223 Position of n-th appearance of 2n in the sequence of prime gaps (A001223). If 2n does not appear at least n times, set a(n) = -1.

Original entry on oeis.org

2, 6, 15, 79, 68, 121, 162, 445, 416, 971, 836, 987, 2888, 1891, 1650, 5637, 5518, 4834, 9237, 8152, 10045, 21550, 20248, 20179, 29914, 36070, 24237, 53355, 52873, 34206, 103134, 90190, 63755, 147861, 98103, 117467, 209102, 206423, 124954, 237847, 369223
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2022

Keywords

Comments

Prime gaps (A001223) are the differences between consecutive prime numbers. They begin: 1, 2, 2, 4, 2, 4, 2, 4, 6, ...

Examples

			We need the first 15 prime gaps (1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6) before we reach the 3rd appearance of 6, so a(6) = 15.
		

Crossrefs

The first appearances are at A038664, seconds A356221.
Diagonal of A356222.
A001223 lists the prime gaps.
A073491 lists numbers with gapless prime indices.
A356224 counts divisors with gapless prime indices, complement A356225.
A356226 = gapless interval lengths of prime indices, run-lengths A287170.

Programs

  • Mathematica
    nn=1000;
    gaps=Differences[Array[Prime,nn]];
    Table[Position[gaps,2*n][[n,1]],{n,Select[Range[nn],Length[Position[gaps,2*#]]>=#&]}]

A373826 Sorted positions of first appearances in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

1, 4, 38, 6781, 23238, 26100
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Sorted positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted positions of first appearances in A373820, cf. A027833.
For runs we have A373824 (unsorted A373825), sorted firsts of A373819.
The unsorted version is A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373827 Position of first appearance of n in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

4, 1, 38, 6781, 26100, 23238
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with positions of first appearances a(n).
		

Crossrefs

Positions of first appearances in A373820.
For runs instead of antiruns we have A373825, sorted A373824.
The sorted version is A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]//Most]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A086978 Increasing peaks in the prime gap sequence A001632.

Original entry on oeis.org

211, 1847, 5623, 30631, 81509, 82129, 162209, 173429, 404671, 542683, 544367, 1101071, 1444411, 2238931, 5845309, 6752747, 6958801, 11981587, 13626407, 49269739, 83751287, 147684323, 166726561, 378044179, 895858267, 1872852203
Offset: 1

Views

Author

Harry J. Smith, Jul 26 2003

Keywords

Comments

a(n) is the larger of the two consecutive primes having a late occurring prime gap g = p_k+1 - p_k. All even gaps smaller than g occur at a smaller prime. Also, the next even gap g+2 also occurs earlier.

Examples

			1847 is in this list because the previous prime is 1831, giving a prime gap of 16. All even gaps less than 16 occur before this (for smaller primes) and the next even gap, 18, also occurs earlier.
		

References

  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 144.

Crossrefs

Previous Showing 31-40 of 51 results. Next