cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A342839 Numbers k such that there are more primes in the interval [4*k+1, 5*k] than there are in the interval [3*k+1, 4*k].

Original entry on oeis.org

1, 4, 7, 9, 10, 15, 16, 22, 23, 24, 25, 34, 36, 37, 39, 40, 47, 55, 56, 57, 58, 64, 67, 82, 84, 86, 87, 88, 91, 93, 94, 95, 96, 97, 98, 99, 100, 102, 104, 105, 106, 107, 130, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 144, 146, 147, 148, 149, 150, 153
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 23 2021

Keywords

Comments

After a(876) = 11895, there are no more terms < 100000.
Conjecture: a(876) = 11895 is the final term.
There exist eight terms k for which A342068(k) != 5: A342068(k) = 2 for k = 1; A342068(k) = 3 for k = 47, 67, 95, and 1323; and A342068(k)=4 for k = 22, 57, and 102.

Examples

			The intervals [1, 100], [101, 200], [201, 300], [301, 400], and [401, 500] contain 25, 21, 16, 16, and 17 primes, respectively (cf. A038822); 17 > 16, so 100 is a term of the sequence.
		

Crossrefs

A164987 First pair of primes (p1, p2) that begin centuries of primes having the same prime configuration, ordered by increasing p2. Each configuration is allowed only once.

Original entry on oeis.org

390503, 480803, 351121, 566821, 78901, 578701, 323623, 606223, 326701, 645901, 619471, 745471, 655717, 842617, 437321, 855821, 854713, 876913, 811337, 915437, 561409, 920509, 515401, 956401, 452401, 1023601, 805633, 1049333, 247141, 1092541, 1037903, 1127603
Offset: 1

Views

Author

Ki Punches, Sep 03 2009 through Dec 06 2009

Keywords

Comments

Rearranged the pairs of numbers so that the sequence of values of p2 increases. The first pair is for the primes 390500 + {3, 27, 39, 53, 81} and 480803 + {3, 27, 39, 53, 81}. There is a large, but finite number of terms. How many terms are there? - T. D. Noe, Feb 10 2013
The sequence lists the small prime twin centuries. As exploration goes into higher primes many are found to be triples or even higher. Example: 1072009 is a twin with 5179509, a triple with 7183109, quadruple with 8284709, quintuple with 8462609, and sextuple with 9739309, and there could be infinitely more. - Ki Punches, Dec 17 2009
The first two centuries without any primes start with 1671800 and 2637800. These are not included in the sequence since they do not have a first prime. However, if they were to be included they would be the 136th pair. - Andrew Howroyd, Feb 25 2018

Examples

			The primes in 480800..480899 are 480803, 480827, 480839, 480853, 480881 ending with 03, 27, 39, 53, 81. The primes in 390500..390599 end with the same digits, and no earlier pair has this quality. Hence a(1) = 390503 and a(2) = 480803.
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99).
Cf. A181098, A186393-A186408 (centuries having 0 to 16 primes).

Programs

  • Mathematica
    pSig[n_] := Prime[Range[PrimePi[100 n] + 1, PrimePi[100 (n + 1)]]] - 100 n; t = {}; c = {}; found = {}; Do[s = pSig[n]; If[Length[s] > 0 && ! MemberQ[found, s] && MemberQ[c, s], d = Mod[s[[1]], 100]; AppendTo[found, s]; AppendTo[t, {Position[c, s][[1, 1]]*100 + d, n*100 + d}]]; AppendTo[c, s], {n, 11000}]; Flatten[t] (* T. D. Noe, Feb 10 2013 *)
  • PARI
    sig(c)={my(s=0); for(v=0,49,if(isprime(100*c+2*v+1),s+=2^v)); s}
    pairs(n)={my(L=List(),M=Map(),c=0); while(#L<2*n, c++; my(s=sig(c),f=0); if(mapisdefined(M,s,&f), if(f&&s,my(d=2*valuation(s,2)+1); listput(L,100*f+d); listput(L,100*c+d); mapput(M,s,0)), mapput(M,s,c))); Vec(L)}
    pairs(20) \\ Andrew Howroyd, Feb 25 2018

Extensions

Terms rearranged by T. D. Noe, Feb 10 2013

A116356 Number of primes less than n*10^21.

Original entry on oeis.org

21127269486018731928, 41644391885053857293, 61943374158983520871, 82103246362658124007, 102160925813497229402, 122137912741771709423, 142048291427909819758, 161902001837504830333, 181706431926947074426, 201467286689315906290
Offset: 1

Views

Author

Robert G. Wilson v, Feb 04 2006

Keywords

Crossrefs

A186394 Numbers k such that there are 2 primes between 100*k and 100*k + 99.

Original entry on oeis.org

3020, 3709, 4484, 4617, 4806, 4921, 5072, 5423, 5616, 6041, 6194, 6231, 6452, 6485, 6683, 6828, 7101, 7365, 7454, 7532, 7839, 8096, 8157, 8728, 8738, 9221, 9486, 9635, 9796, 10152, 10506, 10720, 10852, 11261, 11621, 11736, 11953, 11992
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 780 possible prime patterns for centuries having 2 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			3020 is in this sequence because there are 2 primes between 302000 and 302099 (302009 and 302053).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==2, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 4e9, if(p>N, if(s==2, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011
  • Sage
    def is_A186394(n):
        np0 = next_prime(next_prime(100*n))
        np1 = next_prime(np0)
        return np0 <= 100*n+99 and np1 > 100*n+99  # D. S. McNeil, Feb 21 2011
    

A186407 Numbers k such that there are 15 primes between 100*k and 100*k + 99.

Original entry on oeis.org

8, 12, 16, 22, 23, 26, 33, 40, 49, 63, 75, 94, 375, 424, 1131, 1572, 3442, 3922, 7393, 9780, 13939, 16528, 17492, 29673, 71338, 75877, 237421, 464977, 514483, 687352, 747574, 981953, 1040840, 1269778, 1298137, 1346413, 1790287, 1884223, 2330647, 2527249, 2601874, 2813749
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 12815608 possible prime patterns for centuries having 15 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			8 is in this sequence because there are 15 primes between 800 and 899 (809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883 and 887).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n,100*(n+1), ispseudoprime(k))==15, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 4e9, if(p>N, if(s==15, print1((N\100)-1,", ")); s=1; N=100*(p\100+1),s++)) \\ Charles R Greathouse IV, Feb 21 2011

Extensions

a(19)-a(42) from Charles R Greathouse IV, Feb 21 2011

A261571 Number of possible prime patterns for centuries having exactly n primes.

Original entry on oeis.org

1, 40, 780, 7528, 47878, 225044, 830270, 2459376, 5900602, 11555200, 18634704, 24942742, 27836859, 25913910, 20053913, 12815608, 6699888, 2829786, 948729, 245756, 47150, 6276, 518, 20
Offset: 0

Views

Author

Tim Johannes Ohrtmann, Aug 27 2015

Keywords

Comments

The index of the final term is A364678(100) = 23. - Peter Munn, Sep 04 2023

Crossrefs

Cf. A010956.
Cf. A038822 (number of primes between 100n and 100n+99).
Cf. A181098 (centuries without primes).
Cf. A186393-A186408 (centuries having 1 to 16 primes).
Cf. A186509 (centuries having 17 primes).
Cf. A186311 (first occurrences).
Cf. A364678.

A160709 Centuries containing a prime number of primes.

Original entry on oeis.org

5, 14, 15, 20, 26, 30, 33, 35, 37, 39, 40, 45, 52, 55, 56, 60, 62, 63, 66, 70, 73, 75, 81, 87, 88, 89, 91, 93, 94, 96, 97, 98, 101, 108, 112, 115, 120, 122, 125, 131, 135, 140, 143, 155, 157, 166, 167, 168, 171, 175, 182, 183, 184, 185, 188, 189, 191, 192, 193, 196
Offset: 1

Views

Author

Jonathan Vos Post, May 25 2009

Keywords

Examples

			a(1) = 5 because 5 is the first Century to have a prime number (17) of primes.
		

Crossrefs

Programs

  • Maple
    A038822 := proc(n) numtheory[pi](n*100)-numtheory[pi]((n-1)*100) ; end: A160709 := proc(n) option remember ; local a; if n = 1 then 5 ; else for a from procname(n-1)+1 do if isprime( A038822(a) ) then RETURN(a) ; fi; od: fi; end: seq(A160709(n),n=1...90) ; # R. J. Mathar, May 27 2009
  • Mathematica
    Select[Range[200],PrimeQ[PrimePi[100#]-PrimePi[100(#-1)]]&] (* Harvey P. Dale, Oct 03 2011 *)

Formula

{n: A038822(n) is in A000040}.

Extensions

Extended by Ray Chandler, May 25 2009
More terms from R. J. Mathar, May 27 2009

A186395 Numbers k such that there are 3 primes between 100*k and 100*k + 99.

Original entry on oeis.org

588, 695, 797, 1430, 1621, 1751, 1809, 1869, 1904, 1913, 2042, 2067, 2123, 2127, 2322, 2471, 2505, 2562, 2734, 2833, 2862, 2874, 2935, 3023, 3077, 3134, 3371, 3380, 3552, 3611, 3679, 3703, 3707, 3725, 3878, 4046, 4167, 4215
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 7528 possible prime patterns for centuries having 3 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			588 is in this sequence because there are 3 primes between 58800 and 58899 (58831, 58889 and 58897).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==3, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==3, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186396 Numbers k such that there are 4 primes between 100*k and 100*k + 99.

Original entry on oeis.org

314, 356, 524, 662, 831, 881, 1037, 1101, 1124, 1307, 1370, 1433, 1623, 1713, 1733, 1755, 1801, 1808, 1831, 1880, 1956, 2031, 2150, 2178, 2202, 2222, 2231, 2330, 2374, 2502, 2503, 2532, 2545, 2611, 2618, 2656, 2659, 2665
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 47878 possible prime patterns for centuries having 4 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			314 is in this sequence because there are 4 primes between 31400 and 31499 (31469, 31477, 31481 and 31489).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==4, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==4, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186397 Numbers k such that there are 5 primes between 100*k and 100*k + 99.

Original entry on oeis.org

188, 273, 377, 403, 438, 506, 598, 605, 732, 758, 790, 800, 866, 885, 916, 936, 972, 981, 1031, 1032, 1060, 1074, 1075, 1086, 1103, 1128, 1136, 1193, 1194, 1204, 1218, 1240, 1248, 1265, 1280, 1287, 1293, 1298, 1390, 1400
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 225044 possible prime patterns for centuries having 5 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			188 is in this sequence because there are 5 primes between 18800 and 18899 (18803, 18839, 18859, 18869 and 18899).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==5, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==5, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011
Previous Showing 11-20 of 32 results. Next