A239942 a(n) = prime(n)! - prime(n - 1)!.
4, 114, 4920, 39911760, 6187104000, 355681201075200, 121289412980736000, 25851895093784567808000, 8841761967887685215658639360000, 8213996892184183115771019264000000, 13763753083003506392138056763855339520000000
Offset: 2
Keywords
Examples
a(3) = Prime(3)! - Prime(2)! = 5! - 3! = 120 - 6 = 114.
Links
- Michael De Vlieger, Table of n, a(n) for n = 2..87
Programs
-
Maple
A239942:=n->ithprime(n)!-ithprime(n-1)!: seq(A239942(n), n=2..15); # Wesley Ivan Hurt, Aug 03 2014
-
Mathematica
a239942[n_Integer] := Prime[n]! - Prime[n - 1]!; Table[a239942[n], {n, 2, 87}] (* Michael De Vlieger, Aug 03 2014 *)
-
PARI
a(n)=prime(n)! - prime(n-1)!; vector(22,n,a(n+1)) \\ Joerg Arndt, Mar 31 2014
-
Perl
#!/usr/bin/perl use strict; use warnings; use feature 'say'; use Math::Prime::XS qw(is_prime); use Memoize; use Math::BigInt; memoize('factorial'); use Data::Dumper; my @primes = (); for (2 .. 200) { if(is_prime($_)) { push @primes, $_; } } for (1 .. $#primes) { say factorial($primes[$]) - factorial($primes[$ - 1]); } sub factorial { my $x = Math::BigInt->new(shift); return $x if $x == 1; return factorial($x - 1) * $x; }
-
Python
from gmpy2 import mpz,fac from sympy import prime def A239942(n): return fac(mpz(prime(n))) - fac(mpz(prime(n-1))) # Chai Wah Wu, Aug 06 2014
Comments