cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A356093 a(n) = numerator((prime(n)-1)/prime(n)#), where prime(n)# = A002110(n) is the n-th primorial.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 8, 3, 1, 2, 1, 6, 4, 1, 1, 2, 1, 2, 1, 1, 12, 1, 1, 4, 16, 10, 1, 1, 18, 8, 3, 1, 4, 1, 2, 5, 2, 27, 1, 2, 1, 6, 1, 32, 14, 3, 1, 1, 1, 2, 4, 1, 8, 25, 128, 1, 2, 9, 2, 4, 1, 2, 3, 1, 4, 2, 1, 8, 1, 2, 16, 1, 1, 2, 9, 1, 2, 6, 40, 4, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2022

Keywords

Comments

f(n) = a(n)/A356094(n) is the asymptotic density of numbers k such that prime(n) = A053669(k) is the smallest prime not dividing k.
The asymptotic mean of A053669 is 2.9200509773... (A249270) which is the weighted mean of the primes with f(n) as weights. The corresponding asymptotic standard deviation, which can be evaluated from the second raw moment Sum_{n>=1} f(n) * prime(n)^2, is 2.8013781465... .

Examples

			Fractions begin with 1/2, 1/3, 2/15, 1/35, 1/231, 2/5005, 8/255255, 3/1616615, 1/10140585, 2/462120945, ...
		

Crossrefs

Cf. A002110, A006093, A039787, A053669, A249270, A356094 (denominators).
Similar sequences: A038110, A338559, A340818, A341431, A342450, A342479.

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, 1, n}]; Numerator[Table[(Prime[i] - 1)/primorial[i], {i, 1, 100}]]
  • PARI
    a(n) = numerator((prime(n)-1)/factorback(primes(n))); \\ Michel Marcus, Jul 26 2022
    
  • Python
    from math import gcd
    from sympy import prime, primorial
    def A356093(n): return (p:=prime(n)-1)//gcd(p,primorial(n)) # Chai Wah Wu, Jul 26 2022

Formula

a(n) = 1 iff prime(n) is in A039787.
Let f(n) = a(n)/A356094(n):
f(n) = A006093(n)/A002110(n).
Sum_{n>=1} f(n) = 1.
Sum_{n>=1} f(n) * prime(n) = A249270.

A075431 Primes of the form n+mu(n), where mu is the Moebius function (A008683).

Original entry on oeis.org

2, 7, 11, 23, 29, 41, 47, 59, 83, 101, 107, 109, 113, 137, 167, 173, 179, 181, 211, 227, 229, 257, 263, 281, 317, 331, 347, 353, 359, 373, 383, 401, 409, 433, 463, 467, 479, 503, 547, 563, 571, 587, 601, 617, 641, 653, 677, 691, 709, 719, 761, 821, 829, 839, 853
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 15 2002

Keywords

Comments

Subsequence of A075430.

Crossrefs

Programs

  • PARI
    isok(p)={isprime(p) && (moebius(p+1) == -1 || moebius(p-1) == 1)} \\ Andrew Howroyd, Apr 20 2021

Extensions

Terms a(41) and beyond from Andrew Howroyd, Apr 20 2021

A153214 Primes p such that p+-2 and p+-3 are not squarefree.

Original entry on oeis.org

47, 1447, 1847, 3701, 6653, 11273, 14947, 15727, 17053, 18493, 21661, 24923, 26647, 29153, 32789, 33023, 38873, 39323, 42437, 42923, 44053, 47527, 47977, 49853, 52027, 52153, 56747, 56873, 59929, 71147, 74189, 79427, 80953, 99277, 99713
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[ !SquareFreeQ[p-2]&&!SquareFreeQ[p+2]&&!SquareFreeQ[p-3]&&!SquareFreeQ[p+3],AppendTo[lst,p]],{n,3*7!}];lst
    Select[Prime[Range[10000]],NoneTrue[#+{-3,-2,2,3},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 27 2019 *)

A124045 Numbers n such that n^2 divide A123269(n) = Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ].

Original entry on oeis.org

1, 2, 3, 6, 42
Offset: 1

Views

Author

Alexander Adamchuk, Nov 02 2006

Keywords

Comments

A123269(n) = Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ] = {1, 28, 7625731729896, ...}. Numbers n that divide A123269(n) are listed in A124391(n) = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 40, 42, 43, ...}.

Crossrefs

Programs

  • Mathematica
    Do[f=Sum[Mod[Sum[Mod[Sum[PowerMod[i, j^k, n^2], {i, 1, n}], n^2], {j, 1, n}], n^2], {k, 1, n}]; If[IntegerQ[f/n^2], Print[n]], {n, 1, 103}]
Previous Showing 21-24 of 24 results.