cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A039899 Number of partitions satisfying 0 < cn(0,5) + cn(2,5) + cn(3,5).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 12, 18, 25, 36, 49, 68, 91, 123, 162, 214, 278, 362, 464, 596, 757, 961, 1209, 1521, 1897, 2366, 2931, 3627, 4463, 5487, 6711, 8200, 9976, 12121, 14672, 17738, 21371, 25716, 30852, 36964, 44168, 52709, 62746, 74600, 88497
Offset: 0

Views

Author

Keywords

Comments

For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: o < 0 + 2 + 3 (OMZBBp).
Number of partitions of n such that (greatest part) > (multiplicity of greatest part), for n >= 1. For example, a(6) counts these 8 partitions: 6, 51, 42, 411, 33, 321, 3111, 21111. See the Mathematica program at A240057 for the sequence as a count of partitions defined in this manner, and related sequences. - Clark Kimberling, Apr 02 2014

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
          `if`(i<1, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i,
          `if`(irem(i, 5) in {1, 4}, t, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 03 2014
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; Min[p] < Length[p]], {n, 24}] (* Clark Kimberling, Feb 13 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n==0, t, If[i<1, 0, b[n, i-1, t] + If[i > n, 0, b[n-i, i, If[MemberQ[{1, 4}, Mod[i, 5]], t, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(sum(k=0, N, x^k*(1-x^(k*(k-1)))/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022

Formula

G.f.: Sum_{k>=0} x^k * (1-x^(k*(k-1))) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022

A340856 Squarefree numbers whose greatest prime index (A061395) is divisible by their number of prime factors (A001222).

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 47, 53, 57, 58, 59, 61, 65, 67, 71, 73, 74, 78, 79, 83, 86, 87, 89, 91, 95, 97, 101, 103, 106, 107, 109, 111, 113, 122, 127, 129, 130, 131, 133, 137, 138, 139, 142, 143, 145
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

Also Heinz numbers of strict integer partitions whose greatest part is divisible by their number of parts. These partitions are counted by A340828.

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}         31: {11}       71: {20}
      3: {2}         35: {3,4}      73: {21}
      5: {3}         37: {12}       74: {1,12}
      6: {1,2}       38: {1,8}      78: {1,2,6}
      7: {4}         39: {2,6}      79: {22}
     11: {5}         41: {13}       83: {23}
     13: {6}         43: {14}       86: {1,14}
     14: {1,4}       47: {15}       87: {2,10}
     17: {7}         53: {16}       89: {24}
     19: {8}         57: {2,8}      91: {4,6}
     21: {2,4}       58: {1,10}     95: {3,8}
     23: {9}         59: {17}       97: {25}
     26: {1,6}       61: {18}      101: {26}
     29: {10}        65: {3,6}     103: {27}
     30: {1,2,3}     67: {19}      106: {1,16}
		

Crossrefs

Note: Heinz number sequences are given in parentheses below.
The case of equality, and the reciprocal version, are both A002110.
The non-strict reciprocal version is A168659 (A340609).
The non-strict version is A168659 (A340610).
These are the Heinz numbers of partitions counted by A340828.
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up the prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413/A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).
A257541 gives the rank of the partition with Heinz number n.
A340830 counts strict partitions whose parts are multiples of the length.

Programs

  • Mathematica
    Select[Range[2,100],SquareFreeQ[#]&&Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

A237977 Number of strict partitions of n such that (least part) <= number of parts.

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 29, 36, 42, 51, 60, 72, 84, 100, 117, 137, 160, 187, 216, 251, 290, 334, 385, 442, 507, 581, 664, 757, 864, 982, 1116, 1266, 1435, 1622, 1835, 2069, 2333, 2626, 2954, 3316, 3724, 4172, 4673, 5227, 5844
Offset: 0

Views

Author

Clark Kimberling, Feb 18 2014

Keywords

Examples

			a(8) = 4 counts these partitions:  71, 53, 521, 431.
		

Crossrefs

Programs

  • Mathematica
    z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]
    Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}]  (* A237976 *)
    Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *)
    Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *)
    Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}]  (* A237979 *)
    Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^(k*(k+1)/2)*(1-x^k^2)/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022

Formula

G.f.: Sum_{k>=0} x^(k*(k+1)/2) * (1-x^(k^2)) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
a(n) = A000009(n) - A237979(n). - Vaclav Kotesovec, Jan 18 2022

Extensions

Prepended a(0)=0, Seiichi Manyama, Jan 13 2022

A361861 Number of integer partitions of n where the median is twice the minimum.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 5, 5, 8, 11, 16, 20, 28, 38, 53, 67, 87, 111, 146, 183, 236, 297, 379, 471, 591, 729, 909, 1116, 1376, 1682, 2065, 2507, 3055, 3699, 4482, 5395, 6501, 7790, 9345, 11153, 13316, 15839, 18844, 22333, 26466, 31266, 36924, 43478, 51177
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(4) = 1 through a(11) = 11 partitions:
  (31)  (221)  (321)  (421)   (62)     (621)    (442)     (542)
                      (2221)  (521)    (4221)   (721)     (821)
                              (3221)   (4311)   (5221)    (6221)
                              (3311)   (22221)  (5311)    (6311)
                              (22211)  (32211)  (32221)   (33221)
                                                (33211)   (42221)
                                                (42211)   (43211)
                                                (222211)  (52211)
                                                          (222221)
                                                          (322211)
                                                          (2222111)
The partition (3,2,2,2,1,1) has median 2 and minimum 1, so is counted under a(11).
The partition (5,4,2) has median 4 and minimum 2, so is counted under a(11).
		

Crossrefs

For maximum instead of median we have A118096.
For length instead of median we have A237757, without the coefficient A006141.
With minimum instead of twice minimum we have A361860.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],2*Min@@#==Median[#]&]],{n,30}]

A240057 Number of partitions of n such that (greatest part) is not = (multiplicity of greatest part).

Original entry on oeis.org

0, 2, 3, 4, 6, 10, 14, 21, 28, 40, 53, 74, 97, 131, 171, 225, 290, 377, 480, 616, 779, 987, 1238, 1556, 1935, 2411, 2981, 3685, 4527, 5562, 6793, 8295, 10081, 12241, 14805, 17890, 21538, 25906, 31062, 37201, 44429, 53004, 63070, 74964, 88898, 105297
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Comments

Let # denote "number of" and c(p) = conjugate of partitionp. Then
A240057(n) = # p such that min(p) not = max(c(p));
A039899(n) = # p such that min(p) < max(c(p));
A039900(n) = # p such that min(p) <= max(c(p));
A006141(n) = # p such that min(p) = max(c(p));
A003114(n) = # p such that min(p) > max(c(p));
A003016(n) = # p such that min(p) >= max(c(p));
A064173(n) = # p such that max(p) < max(c(p));
A064174(n) = # p such that max(p) <= max(c(p));
A047993(n) = # p such that max(p) = max(c(p)).
See A240178 for related sequences. - Clark Kimberling, Apr 11 2014

Examples

			a(9) = 28 counts all the 30 partitions of 9 except 333 and 2211111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))))
        end:
    a:= n->combinat[numbpart](n)-add(b(n-j^2, j-1), j=0..isqrt(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 03 2014
  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Max[p]]], {n, 0, z}]  (* A003106 *)
    t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Max[p]]], {n, 0, z}] (* A003114 *)
    t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Max[p]]], {n, 0, z}] (* A006141 *)
    tt = Table[Count[f[n], p_ /; Max[p] != Count[p, Max[p]]], {n, 0, z}] (* A240057 *)
    t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Max[p]]], {n, 0, z}] (* A039899 *)
    t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Max[p]]], {n, 0, z}] (* A039900 *)
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]]];
    a[n_] := PartitionsP[n] - Sum[b[n - j^2, j - 1], {j, 0, Sqrt[n]}];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)

Formula

a(n) + A006141(n) = A000041(n) for n > 0.

A324561 Numbers with at least one prime index equal to 0, 1, or 4 modulo 5.

Original entry on oeis.org

2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 80, 82, 84, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of the integer partitions counted by A039900. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  24: {1,1,1,2}
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= n-> is(irem(pi(min(factorset(n))), 5) in {0, 1, 4}):
    select(q, [$2..100])[];  # Alois P. Heinz, Mar 07 2019
  • Mathematica
    Select[Range[100],Intersection[Mod[If[#==1,{},PrimePi/@First/@FactorInteger[#]],5],{0,1,4}]!={}&]

A340930 Heinz numbers of integer partitions of even negative rank.

Original entry on oeis.org

8, 24, 32, 36, 54, 80, 81, 96, 120, 128, 144, 180, 200, 216, 224, 270, 300, 320, 324, 336, 384, 405, 450, 480, 486, 500, 504, 512, 560, 576, 675, 704, 720, 729, 750, 756, 784, 800, 840, 864, 896, 1056, 1080, 1125, 1134, 1176, 1200, 1250, 1260, 1280, 1296, 1344
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
       8: (1,1,1)             270: (3,2,2,2,1)
      24: (2,1,1,1)           300: (3,3,2,1,1)
      32: (1,1,1,1,1)         320: (3,1,1,1,1,1,1)
      36: (2,2,1,1)           324: (2,2,2,2,1,1)
      54: (2,2,2,1)           336: (4,2,1,1,1,1)
      80: (3,1,1,1,1)         384: (2,1,1,1,1,1,1,1)
      81: (2,2,2,2)           405: (3,2,2,2,2)
      96: (2,1,1,1,1,1)       450: (3,3,2,2,1)
     120: (3,2,1,1,1)         480: (3,2,1,1,1,1,1)
     128: (1,1,1,1,1,1,1)     486: (2,2,2,2,2,1)
     144: (2,2,1,1,1,1)       500: (3,3,3,1,1)
     180: (3,2,2,1,1)         504: (4,2,2,1,1,1)
     200: (3,3,1,1,1)         512: (1,1,1,1,1,1,1,1,1)
     216: (2,2,2,1,1,1)       560: (4,3,1,1,1,1)
     224: (4,1,1,1,1,1)       576: (2,2,1,1,1,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A101708.
The positive version is (A340605).
The odd version is A101707 (A340929).
The not necessarily even version is A064173 (A340788).
A001222 counts prime factors.
A027187 counts partitions of even length.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058696 counts partitions of even numbers.
A061395 selects the maximum prime index.
A063995/A105806 count partitions by Dyson rank.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[2,100],EvenQ[rk[#]]&&rk[#]<0&]

A340928 Least image of A001222 applied to the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4277 are {4,6,15} with images {2,2,2}, so a(4277) = 2.
The prime indices of 8303 are {8,8,9} with images {3,3,2}, so a(8303) = 2.
		

Crossrefs

Positions of 0's are A000079.
Positions of first appearances are A033844.
The version for maximum is A340691.
A003963 multiplies together the prime indices.
A026794 counts partitions by sum and minimum.
A056239 adds up the prime indices.
A061395 selects the greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Table[If[n==1,0,Min@@PrimeOmega/@PrimePi/@First/@FactorInteger[n]],{n,100}]
Previous Showing 21-28 of 28 results.