cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A059298 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 2.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 24, 12, 1, 5, 80, 90, 20, 1, 6, 240, 540, 240, 30, 1, 7, 672, 2835, 2240, 525, 42, 1, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 10, 11520, 262440, 860160, 787500, 272160, 41160
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Comments

The inverse triangle is the signed version 1,-2,1,9,-6,1,.. of triangle A061356. - Peter Luschny, Mar 13 2009
T(n,k) is the sum of the products of the cardinality of the blocks (cells) in the set partitions of {1,2,..,n} into exactly k blocks.
From Peter Bala, Jul 22 2014: (Start)
Exponential Riordan array [(1+x)*exp(x), x*exp(x)].
Let M = A093375, the exponential Riordan array [(1+x)*exp(x), x], and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. The present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... - see the Example section. (End)
The Bell transform of n+1. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
1;
2, 1;
3, 6, 1;
4, 24, 12, 1; ...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1          \/1        \/1        \      /1           \
|2  1       ||0 1      ||0 1      |      |2  1        |
|3  4  1    ||0 2 1    ||0 0 1    |... = |3  6  1     |
|4  9  6 1  ||0 3 4 1  ||0 0 2 1  |      |4 24 12  1  |
|5 16 18 8 1||0 4 9 6 1||0 0 3 4 1|      |5 80 90 20 1|
|...        ||...      ||...      |      |...         | (End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297, A059298, A059299, A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248. A093375.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T:= (n, k)-> binomial(n+1,k+1)*(k+1)^(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Georg Fischer, Oct 27 2021
  • Mathematica
    t = Transpose[ Table[ Range[0, 11]! CoefficientList[ Series[(x Exp[x])^n/n!, {x, 0, 11}], x], {n, 11}]]; Table[ t[[n, k]], {n, 2, 11}, {k, n - 1}] // Flatten (* or simply *)
    t[n_, k_] := Binomial[n, k]*k^(n - k); Table[t[n, k], {n, 10}, {k, n}] // Flatten
  • PARI
    for(n=1, 25, for(k=1, n, print1(binomial(n,k)*k^(n-k), ", "))) \\ G. C. Greubel, Jan 05 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: n+1, 10) # Peter Luschny, Jan 18 2016
    

A059299 Triangle of idempotent numbers (version 3), T(n, k) = binomial(n, k) * (n - k)^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 24, 4, 0, 1, 20, 90, 80, 5, 0, 1, 30, 240, 540, 240, 6, 0, 1, 42, 525, 2240, 2835, 672, 7, 0, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 0, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 0, 1, 90, 2880, 41160
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Examples

			Triangle begins:
1,
1,  0,
1,  2,   0,
1,  6,   3,    0,
1, 12,  24,    4,    0,
1, 20,  90,   80,    5,   0,
1, 30, 240,  540,  240,   6, 0,
1, 42, 525, 2240, 2835, 672, 7, 0,
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297-A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n,k)*(n-k)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T := (n, k) -> binomial(n, k) * (n - k)^k:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • Mathematica
    t[n_, k_] := Binomial[n, k]*(n - k)^k; Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • PARI
    concat([1], for(n=0, 25, for(k=0, n, print1(binomial(n,k)*(n-k)^k, ", ")))) \\ G. C. Greubel, Jan 05 2017

Extensions

Name corrected by Peter Luschny, Nov 12 2023

A172978 a(n) = binomial(n+10, 10)*4^n.

Original entry on oeis.org

1, 44, 1056, 18304, 256256, 3075072, 32800768, 318636032, 2867724288, 24216338432, 193730707456, 1479398129664, 10848919617536, 76776969601024, 526470648692736, 3509804324618240, 22813728110018560, 144934272698941440, 901813252348968960, 5505807224867389440
Offset: 0

Views

Author

Zerinvary Lajos, Feb 06 2010

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+10, 10)*4^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
  • Mathematica
    Table[Binomial[n + 10, 10]*4^n, {n, 0, 20}]

Formula

From Amiram Eldar, Mar 27 2022: (Start)
G.f.: 1/(1 - 4*x)^11.
Sum_{n>=0} 1/a(n) = 14269429/63 - 787320*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 78125000*log(5/4) - 1098284605/63. (End)

A305833 Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013611 ((1+4*x)^n).
The coefficients in the expansion of 1/(1-4x-x^2) are given by the sequence generated by the row sums.
The row sums are A001076 (Denominators of continued fraction convergent to sqrt(5)).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 4.236067977...; a metallic mean (see A098317), when n approaches infinity.

Examples

			Triangle begins:
         1;
         4;
        16,        1;
        64,        8;
       256,       48,        1;
      1024,      256,       12;
      4096,     1280,       96,       1;
     16384,     6144,      640,      16;
     65536,    28672,     3840,     160,      1;
    262144,   131072,    21504,    1280,     20;
   1048576,   589824,   114688,    8960,    240,    1;
   4194304,  2621440,   589824,   57344,   2240,   24;
  16777216, 11534336,  2949120,  344064,  17920,  336,  1;
  67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.

Crossrefs

Row sums give A001076.
Cf. A000302 (column 0), A002697 (column 1), A038845 (column 2), A038846 (column 3), A040075 (column 4).
Cf. A013611.
Cf. A098317.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1 / (1 - 4*t*x - t^2).
Previous Showing 11-14 of 14 results.