A059298
Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 2.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 24, 12, 1, 5, 80, 90, 20, 1, 6, 240, 540, 240, 30, 1, 7, 672, 2835, 2240, 525, 42, 1, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 10, 11520, 262440, 860160, 787500, 272160, 41160
Offset: 0
Triangle begins
1;
2, 1;
3, 6, 1;
4, 24, 12, 1; ...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \/1 \/1 \ /1 \
|2 1 ||0 1 ||0 1 | |2 1 |
|3 4 1 ||0 2 1 ||0 0 1 |... = |3 6 1 |
|4 9 6 1 ||0 3 4 1 ||0 0 2 1 | |4 24 12 1 |
|5 16 18 8 1||0 4 9 6 1||0 0 3 4 1| |5 80 90 20 1|
|... ||... ||... | |... | (End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
-
/* As triangle */ [[Binomial(n,k)*k^(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
T:= (n, k)-> binomial(n+1,k+1)*(k+1)^(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Georg Fischer, Oct 27 2021
-
t = Transpose[ Table[ Range[0, 11]! CoefficientList[ Series[(x Exp[x])^n/n!, {x, 0, 11}], x], {n, 11}]]; Table[ t[[n, k]], {n, 2, 11}, {k, n - 1}] // Flatten (* or simply *)
t[n_, k_] := Binomial[n, k]*k^(n - k); Table[t[n, k], {n, 10}, {k, n}] // Flatten
-
for(n=1, 25, for(k=1, n, print1(binomial(n,k)*k^(n-k), ", "))) \\ G. C. Greubel, Jan 05 2017
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: n+1, 10) # Peter Luschny, Jan 18 2016
A059299
Triangle of idempotent numbers (version 3), T(n, k) = binomial(n, k) * (n - k)^k.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 24, 4, 0, 1, 20, 90, 80, 5, 0, 1, 30, 240, 540, 240, 6, 0, 1, 42, 525, 2240, 2835, 672, 7, 0, 1, 56, 1008, 7000, 17920, 13608, 1792, 8, 0, 1, 72, 1764, 18144, 78750, 129024, 61236, 4608, 9, 0, 1, 90, 2880, 41160
Offset: 0
Triangle begins:
1,
1, 0,
1, 2, 0,
1, 6, 3, 0,
1, 12, 24, 4, 0,
1, 20, 90, 80, 5, 0,
1, 30, 240, 540, 240, 6, 0,
1, 42, 525, 2240, 2835, 672, 7, 0,
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].
-
/* As triangle: */ [[Binomial(n,k)*(n-k)^k: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
-
T := (n, k) -> binomial(n, k) * (n - k)^k:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
-
t[n_, k_] := Binomial[n, k]*(n - k)^k; Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
-
concat([1], for(n=0, 25, for(k=0, n, print1(binomial(n,k)*(n-k)^k, ", ")))) \\ G. C. Greubel, Jan 05 2017
A172978
a(n) = binomial(n+10, 10)*4^n.
Original entry on oeis.org
1, 44, 1056, 18304, 256256, 3075072, 32800768, 318636032, 2867724288, 24216338432, 193730707456, 1479398129664, 10848919617536, 76776969601024, 526470648692736, 3509804324618240, 22813728110018560, 144934272698941440, 901813252348968960, 5505807224867389440
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..157
- Index entries for linear recurrences with constant coefficients, signature (44,-880,10560,-84480,473088,-1892352,5406720,-10813440,14417920,-11534336,4194304).
-
[Binomial(n+10, 10)*4^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
-
Table[Binomial[n + 10, 10]*4^n, {n, 0, 20}]
A305833
Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0
Triangle begins:
1;
4;
16, 1;
64, 8;
256, 48, 1;
1024, 256, 12;
4096, 1280, 96, 1;
16384, 6144, 640, 16;
65536, 28672, 3840, 160, 1;
262144, 131072, 21504, 1280, 20;
1048576, 589824, 114688, 8960, 240, 1;
4194304, 2621440, 589824, 57344, 2240, 24;
16777216, 11534336, 2949120, 344064, 17920, 336, 1;
67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
Comments