cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A046069 Riesel Problem: Smallest m >= 0 such that (2n-1)2^m-1 is prime, or -1 if no such value exists.

Original entry on oeis.org

2, 0, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, 1, 4, 1, 1, 2, 1, 1, 12, 3, 2, 4, 5, 1, 2, 7, 1, 2, 1, 3, 2, 5, 1, 4, 1, 3, 2, 1, 1, 10, 3, 2, 10, 9, 2, 8, 1, 1, 12, 1, 2, 2, 25, 1, 2, 3, 1, 2, 1, 1, 2, 5, 1, 4, 5, 3, 2, 1, 1, 2, 3, 2, 4, 1, 2, 2, 1, 1, 8, 3, 4, 2, 1, 3, 226, 3, 1, 2
Offset: 1

Views

Author

Keywords

Comments

There exist odd integers 2k-1 such that (2k-1)2^n-1 is always composite.

References

  • Ribenboim, P., The New Book of Prime Number Records. New York: Springer-Verlag, pp. 357-359, 1996.

Crossrefs

Main sequences for Riesel problem: A038699, A040081, A046069, A050412, A052333, A076337, A101036, A108129.
Bisection of A040081.

Programs

  • Mathematica
    max = 10^6; (* this maximum value of m is sufficient up to n=1000 *) a[1] = 2; a[2] = 0; a[n_] := For[m = 1, m <= max, m++, If[PrimeQ[(2*n - 1)*2^m - 1], Return[m]]] /. Null -> -1; Reap[ Do[ Print[ "a(", n, ") = ", a[n]]; Sow[a[n]], {n, 1, 100}]][[2, 1]] (* Jean-François Alcover, Nov 15 2013 *)

A194591 Least k >= 0 such that n*2^k - 1 or n*2^k + 1 is prime, or -1 if no such value exists.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 5, 0, 3, 0, 1, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 0, 4, 1
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 29 2011

Keywords

Comments

Fred Cohen and J. L. Selfridge showed that a(n) = -1 infinitely often.
a(n) = 0 iff n is in A045718.

Examples

			For n=7, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(7)=1.
		

Crossrefs

Cf. A217892 and A194600 (indices and values of the records).

Programs

  • Mathematica
    Table[k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; k, {n, 100}] (* T. D. Noe, Aug 29 2011 *)

Formula

If a(n)>0, then a(2n)=a(n)-1.

A194606 Least k >= 0 such that prime(n)*2^k - 1 or prime(n)*2^k + 1 is prime, or -1 if no such value exists, where prime(n) denotes the n-th prime number.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 4, 1, 5, 3, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 6, 1, 2, 1, 2, 1, 3, 4, 1, 2, 4, 1, 1, 3, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 11, 1, 4, 2, 3, 1, 2, 1, 11, 1, 1, 9, 3, 6, 1, 1, 3, 3, 4, 1, 1, 2, 1, 2, 11, 4, 3, 2, 1, 4, 1, 2, 1, 1
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 30 2011

Keywords

Comments

A194607 gives the record values.

Examples

			For n=4, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(4)=1.
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; k = 0; While[! PrimeQ[p*2^k - 1] && ! PrimeQ[p*2^k + 1], k++]; k, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *)

A194636 Least k >= 0 such that (2*n-1)*2^k - 1 or (2*n-1)*2^k + 1 is prime, or -1 if no such value exists.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 5, 3, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 3, 6, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 5, 1, 3, 4, 1, 1, 1, 1, 2, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 31 2011

Keywords

Comments

Bisection of A194591: a(n) = A194591(2*n-1).
A194637 gives the record values.

Examples

			For n=4, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(4)=1.
		

Crossrefs

Programs

  • Mathematica
    Table[n = 2*n - 1; k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; k, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *)
    p[n_]:=Module[{c=2n-1,k=0},While[!Or@@PrimeQ[c*2^k+{1,-1}],k++];k]; Array[ p,90] (* Harvey P. Dale, Mar 08 2013 *)

A108129 Riesel problem: let k=2n-1; then a(n)=smallest m >= 1 such that k*2^m-1 is prime, or -1 if no such prime exists.

Original entry on oeis.org

2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, 1, 4, 1, 1, 2, 1, 1, 12, 3, 2, 4, 5, 1, 2, 7, 1, 2, 1, 3, 2, 5, 1, 4, 1, 3, 2, 1, 1, 10, 3, 2, 10, 9, 2, 8, 1, 1, 12, 1, 2, 2, 25, 1, 2, 3, 1, 2, 1, 1, 2, 5, 1, 4, 5, 3, 2, 1, 1, 2, 3, 2, 4, 1, 2, 2, 1, 1, 8, 3, 4, 2, 1, 3, 226, 3, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Jorge Coveiro, Jun 04 2005

Keywords

Comments

It is conjectured that the integer k = 509203 is the smallest Riesel number, that is, the first n such that a(n) = -1 is 254602.
Browkin & Schinzel, having proved that 509203*2^k - 1 is composite for all k > 0, ask for the first such number with this property, noting that the question is implicit in Aigner 1961. - Charles R Greathouse IV, Jan 12 2018
Record values begin a(1) = 2, a(7) = 3, a(12) = 4, a(22) = 7, a(30) = 12, a(64) = 25, a(96) = 226, a(330) = 800516; the next record appears to be a(1147), unless a(1147) = -1. (The value for a(330), i.e., for k = 659, is from the Ballinger & Keller link, which also lists k = 2293, i.e., n = (k+1)/2 = (2293+1)/2 = 1147, as the smallest of 50 values of k < 509203 for which no prime of the form k*2^m-1 had yet been found.) - Jon E. Schoenfield, Jan 13 2018
Same as A046069 except for a(2) = 1. - Georg Fischer, Nov 03 2018

References

  • Hans Riesel, Några stora primtal, Elementa 39 (1956), pp. 258-260.

Crossrefs

Main sequences for Riesel problem: A038699, A040081, A046069, A050412, A052333, A076337, A101036, A108129.

Programs

  • Mathematica
    Array[Function[k, SelectFirst[Range@300, PrimeQ[k 2^# - 1] &]][2 # - 1] &, 102] (* Michael De Vlieger, Jan 12 2018 *)
    smk[n_]:=Module[{m=1,k=2n-1},While[!PrimeQ[k 2^m-1],m++];m]; Array[smk,120] (* Harvey P. Dale, Dec 26 2023 *)
  • PARI
    forstep(k=1,301,2,n=1;while(!isprime(k*2^n-1),n++);print1(n,","))

Extensions

Edited by Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 25 2006
Name corrected by T. D. Noe, Feb 13 2011

A108234 Minimum m such that n*2^m+k is prime, for k < 2^m. In other words, assuming you've read n out of a binary stream, a(n) is the minimum number of additional bits (appended to the least significant end of n) you must read before it is possible to obtain a prime.

Original entry on oeis.org

1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 3, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 2, 2, 1, 2, 2, 0, 1, 0, 2, 1, 2, 1, 1, 0, 3, 1, 2, 0, 3, 0, 1, 2, 3, 0, 1, 2, 1, 1, 2, 0, 1, 2, 1, 2, 2, 0, 2, 0, 2, 1, 2, 1, 4, 0, 1, 1, 2, 0, 3, 0, 1, 1, 2, 2, 1, 0, 3, 1, 2, 0, 2, 3, 1, 2, 2, 0, 1, 2, 3, 2, 2, 1, 1, 0, 1, 1, 2
Offset: 1

Views

Author

Mike Stay, Jun 16 2005

Keywords

Comments

Somewhat related to the Riesel problem, A040081, the minimum m such that n*2^m-1 is prime.

Examples

			a(12) = 3 because 12 = 1100 in binary and 97 = 1100001 is the first prime that starts with 1100, needing 3 extra bits.
		

Crossrefs

Cf. A040081, A091991, A164022 (smallest prime).

Programs

  • MATLAB
    % and Octave.
    for n=1:100;m=0;k=0;while(~isprime(n*2^m+k))k=k+1;if k==2^m k=0;m=m+1;end;end;x(n)=m;end;x
    
  • PARI
    A108234(n) = { my(m=0,k=0); while(!isprime((n*2^m)+k), k=k+1; if(2^m==k, k=0; m=m+1)); m; }; \\ Antti Karttunen, Dec 16 2017, after Octave/MATLAB code

Extensions

Definition clarified by Antti Karttunen, Dec 16 2017

A250205 Riesel problem in base 6: Least k > 0 such that n*6^k-1 is prime, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 2, 1, 0, 2, 1, 1, 1, 0, 1, 1, 2, 2, 0, 4, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 4, 1, 3, 0, 1, 1, 6, 2, 0, 5, 1, 1, 1, 0, 6, 2, 1, 1, 0, 1, 2, 10, 1, 0, 1, 3, 1, 1, 0, 1, 1, 2, 1, 0, 1, 8, 1, 1, 0, 1, 2, 2, 4, 0, 49, 1, 1, 1, 0, 2, 1, 1, 1, 0, 2, 1, 6, 2, 0, 1, 1, 1, 1, 0, 5, 1, 1, 2, 0, 1, 10, 2, 1
Offset: 1

Views

Author

Eric Chen, Mar 13 2015

Keywords

Comments

a(5j+1) = 0 except for a(1), since (5j+1)*6^k-1 is always divisible by 5, but there are infinitely many numbers not in the form 5j+1 such that a(n) = 0.
a(n) = 0 for n == 84687 mod 10124569, because then n*6^k-1 is always divisible by at least one of 7, 13, 31, 37, 97. - Robert Israel, Mar 17 2015
Conjecture: if n is not in the form 5j+1 and n < 84687, then a(n) > 0.

Crossrefs

Cf. A250204 (Least k > 0 such that n*6^k+1 is prime).

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N), using k up to 10000
    a[1]:= 1:
    for n from 2 to N do
    if n mod 5 = 1 then a[n]:= 0
    else
        for k from 1 to 10000 do
        if isprime(n*6^k-1) then
           a[n]:= k;
             break
          fi
        od
    fi
    od:
    seq(a[n],n=1..N); # Robert Israel, Mar 17 2015
  • Mathematica
    (* m <= 10000 is sufficient up to n = 1000 *)
    a[n_] := For[k = 1, k <= 10000, k++, If[PrimeQ[n*6^k - 1], Return[k]]] /. Null -> 0; Table[a[n], {n, 1, 120}]
  • PARI
    a(n) = if(n%5==1 && n>1, 0, for(k = 1, 10000, if(ispseudoprime(n*6^k-1), return(k))))

Formula

a(A024898(n)) = 1. - Michel Marcus, Mar 16 2015

A093008 Smallest number of 1's to append to the binary representation of n such that primes become nonprimes and nonprimes become primes.

Original entry on oeis.org

1, 5, 2, 2, 4, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 2, 3, 2, 1, 3, 4, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 3, 7, 1, 1, 3, 4, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 3, 12, 1, 3, 1, 2, 1, 4, 1, 5, 1, 1, 1, 2, 1, 7, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 2, 5, 6, 1, 23, 4, 6, 1, 2, 3, 3, 2, 1, 1, 1, 1, 1, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2004

Keywords

Comments

n>1: a(n) = A063377(n) + A040081(n+1).

Crossrefs

Cf. A093009.

A217377 a(n) is the smallest m>=0 such that ((5n+1)*6^m-1)/5 is prime; or -1 if no such value exists.

Original entry on oeis.org

1, 0, 0, 2, 0, 1, 0, 4, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 2, 1, 4, 0, 3, 1, 1, 1, 3, 0, 1, 0, 1, 1, 2, 1, 2, 0, 1, 3, 1, 0, 15, 0, 3, 1, 1, 0, 4, 3, 3008, 1, 1, 0, 2, 1, 1, 4, 1, 0, 3, 0, 1, 1, 2, 2, 1, 0, 1, 3, 1, 0, 1, 0, 2, 2, 1, 1, 4, 0, 2, 1, 4, 0, 5, 2, 8
Offset: 1

Views

Author

Dmitri Kamenetsky, Oct 01 2012

Keywords

Comments

Let f(n)=6n+1. Let f(n,m) be f applied to n m-times. For example f(n,3) = f(f(f(n))). Then a(n) is the smallest m>=0 such that f(n,m) is prime.
a(525)=27871 is the largest found value in this sequence, which generates a probable prime with 21691 digits.
a(1247) and a(1898) are currently unknown. If they are positive then a(1247)>86500 and a(1898)>58000.

Examples

			a(8)=4, because 4 is the smallest value for m such that ((5*8+1)*6^m-1)/5 is prime. The prime value is (41*6^4-1)/5 = 6*(6*(6*(6*8+1)+1)+1)+1 = 10627.
		

Crossrefs

Cf. A040081.

A225721 Starting with x = n, the number of iterations of x := 2x - 1 until x is prime, or -1 if no prime exists.

Original entry on oeis.org

-1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 6, 1, 1, 0, 1, 2, 2, 1, 2, 0, 1, 0, 8, 3, 1, 2, 1, 0, 2, 5, 1, 0, 1, 0, 2, 1, 2, 0, 583, 1, 2, 1, 1, 0, 1, 1, 4, 1, 2, 0, 5, 0, 4, 7, 1, 2, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 1, 4, 3, 0, 2, 3, 1, 0, 1, 2, 4
Offset: 1

Views

Author

Keywords

Comments

This appears to be a shifted variant of A040076. - R. J. Mathar, May 28 2013
If n is prime, then a(n) = 0. If the sequence never reaches a prime number (for n = 1) or the prime number has more than 1000 digits, -1 is used instead. There are 22 such numbers for n < 10000.

Examples

			For a(20), the trajectory is 20->39->77->153->305->609->1217, a prime number. That required 6 steps, so a(20)=6.
		

Crossrefs

Cf. A050921 (primes obtained).
Cf. A040081, A038699, A050412, A052333, A046069 (related to the Riesel problem).
Cf. A000668, A000043, A065341 (Mersenne primes), A000079 (powers of 2).
Cf. A007770 (happy numbers), A031177 (unhappy numbers).
Cf. A037274 (home primes), A037271 (steps), A037272, A037272.

Programs

  • R
    y=as.bigz(rep(0,500)); ys=rep(0,500);
    for(i in 1:500) { n=as.bigz(i); k=0;
        while(isprime(n)==0 & ndig(n)<1000 & k<5000) { k=k+1; n=2*n-1 }
        if(ndig(n)>=1000 | k>=5000) { ys[i]=-1; y[i]=-1;
        } else {ys[i]=k; y[i]=n; }
    }
Previous Showing 11-20 of 24 results. Next