cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A062332 Primes starting and ending with 1.

Original entry on oeis.org

11, 101, 131, 151, 181, 191, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291, 1301, 1321, 1361, 1381, 1451, 1471, 1481, 1511, 1531, 1571, 1601, 1621, 1721, 1741, 1801, 1811, 1831, 1861, 1871, 1901, 1931, 1951, 10061, 10091, 10111, 10141
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Comments

Complement of A208261 (nonprime numbers with all divisors starting and ending with digit 1) with respect to A208262 (numbers with all divisors starting and ending with digit 1). - Jaroslav Krizek, Mar 04 2012
Intersection of A030430 and A045707. - Michel Marcus, Jun 08 2013

Examples

			102701 is a member as it is a prime and the first and the last digits are both 1.
		

Crossrefs

Cf. A208259 (Numbers starting and ending with digit 1).

Programs

  • Haskell
    a062332 n = a062332_list !! (n-1)
    a062332_list = filter ((== 1) . a010051') a208259_list
    -- Reinhard Zumkeller, Jul 16 2014
  • Mathematica
    fl1Q[n_]:=Module[{idn=IntegerDigits[n]},First[idn]==Last[idn]==1]; Select[ Prime[Range[1300]],fl1Q] (* Harvey P. Dale, Apr 30 2012 *)
  • PARI
    { n=-1; t=log(10); forprime (p=2, 5*10^5, if ((p-10*(p\10)) == 1 && (p\10^(log(p)\t)) == 1, write("b062332.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 05 2009
    

Formula

A010051(a(n)) * A000030(a(n)) * (a(n) mod 10) = 1. - Reinhard Zumkeller, Jul 16 2014

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 29 2001
Missing term a(36)=1901 added by Harry J. Smith, Aug 05 2009

A065680 Number of primes <= prime(n) which begin with a 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Comments

Considering the frequency of all decimal digits in leading position of prime numbers (A065681 - A065687), we cannot apply Benford's Law. But we observe at 10^e - levels that the frequency for 0 to 9 decreases monotonically, at least in the small range until 10^7.
The "begins with 9" sequence is too dull to include. - N. J. A. Sloane
Note that the primes do not satisfy Benford's law (see A000040). - N. J. A. Sloane, Feb 08 2017

Examples

			13 is the second prime beginning with 1: A000040(6) = 13, therefore a(6) = 2. a(664579) = 80020 (A000040(664579) = 9999991 is the largest prime < 10^7).
		

Crossrefs

Programs

  • Mathematica
    Accumulate[If[First[IntegerDigits[#]]==1,1,0]&/@Prime[Range[80]]] (* Harvey P. Dale, Jan 22 2013 *)
  • PARI
    lista(n) = { my(a=[p\10^logint(p,10)==1 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009

A206287 Numbers with all divisors starting with digit 1.

Original entry on oeis.org

1, 11, 13, 17, 19, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1111
Offset: 1

Views

Author

Jaroslav Krizek, Feb 12 2012

Keywords

Comments

Equivalently, integers m with all divisors starting with the same first digit of m; in fact, as 1 divides all the integers, this digit is necessarily 1; also, for these terms m: A357299(m) = A000005(m). - Bernard Schott, Sep 25 2022

Examples

			All divisors of 187 (1, 11, 17, 187) start with digit 1.
		

Crossrefs

Disjoint union of A045707 and A206288.
Cf. A004615 (with last digit)

Programs

  • Maple
    filter:= proc(n) andmap(t -> floor(t/10^ilog10(t)) = 1, numtheory:-divisors(n)) end proc:
    select(filter, [seq($10^d .. 2*10^d-1, d=0..3)]); # Robert Israel, Dec 25 2024
  • Mathematica
    fQ[n_] := Module[{d = Divisors[n]}, Union[IntegerDigits[#][[1]] & /@ d] == {1}]; Select[Range[1111], fQ] (* T. D. Noe, Feb 13 2012 *)

A206288 Nonprime numbers with all divisors starting with digit 1.

Original entry on oeis.org

1, 121, 143, 169, 187, 1111, 1133, 1177, 1199, 1243, 1313, 1331, 1339, 1391, 1397, 1417, 1441, 1469, 1507, 1529, 1573, 1639, 1651, 1661, 1703, 1717, 1727, 1751, 1781, 1793, 1807, 1819, 1837, 1853, 1859, 1903, 1919, 1921, 1937, 1957, 1963, 1969, 1991
Offset: 1

Views

Author

Jaroslav Krizek, Feb 12 2012

Keywords

Comments

Subsequence of A206286, A131835.
Complement of A045707 (primes with first digit 1) with respect to A202287 (numbers with all divisors starting with digit 1).

Examples

			All divisors of 1859 (1, 11, 13, 169, 1859) start with digit 1.
		

Crossrefs

Cf. A045707 (primes with first digit 1), A202287 (numbers with all divisors starting with digit 1).

Programs

  • Maple
    fd1:= n -> n < 2*10^ilog10(n):
    filter:= proc(n) not isprime(n) and andmap(fd1,numtheory:-divisors(n)) end proc:
    select(filter, [1,seq(seq(i,i=10^d+1..2*10^d-1,2),d=1..3)]); # Robert Israel, Mar 13 2019
  • Mathematica
    fQ[n_] := Module[{d = Divisors[n]}, Union[IntegerDigits[#][[1]] & /@ d] == {1}]; Select[Range[1991], ! PrimeQ[#] && fQ[#] &] (* T. D. Noe, Feb 13 2012 *)

A206286 Nonprime numbers starting with a digit 1.

Original entry on oeis.org

1, 10, 12, 14, 15, 16, 18, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 158
Offset: 1

Views

Author

Jaroslav Krizek, Feb 12 2012

Keywords

Comments

Complement of A045707 with respect to A131835. Supersequence of A206288.

Crossrefs

Cf. A045707 (primes with first digit 1), A131835 (numbers starting with a digit 1).
Cf. A206288.

Programs

  • Mathematica
    Select[Range[200], ! PrimeQ[#] && IntegerDigits[#][[1]] == 1 &] (* T. D. Noe, Feb 13 2012 *)
  • Python
    from sympy import primepi
    def A206286(n):
        def f(x): return n-1+x+((m:=10**(l:=len(str(x))-1))-(k:=min((m<<1)-1,x))-primepi(m-1)+primepi(k))-sum((m:=10**i)+primepi(m-1)-primepi((m<<1)-1) for i in range(l))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 10 2024

A306661 Numbers with chained divisors: Numbers k with divisors such that the last digit of every divisor is the same as the first digit of the next divisor.

Original entry on oeis.org

1, 11, 13, 17, 19, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1111
Offset: 1

Views

Author

Giorgos Kalogeropoulos, May 05 2019

Keywords

Comments

All prime numbers whose first digit is 1 (A045707) have this property.
The first composite numbers having this property are A307858: 121, 1111, 1207, ...

Examples

			14641 is such a number because its divisors are 1, 11, 121, 1331, 14641.
Also, 90043 is in the sequence because its divisors are 1, 127, 709, 90043 and the last digit of every divisor is the first digit of the next one.
		

Crossrefs

A307858 and A045707 are subsequences.

Programs

  • Mathematica
    Select[Range@1500,And@@(Last@#[[1]]==First@#[[2]]&/@Partition[IntegerDigits/@Divisors@#,2,1])&]
Previous Showing 21-26 of 26 results.