cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A355430 Primes starting with an even decimal digit.

Original entry on oeis.org

2, 23, 29, 41, 43, 47, 61, 67, 83, 89, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 809, 811, 821
Offset: 1

Views

Author

Bernard Schott, Jul 20 2022

Keywords

Comments

Primes whose reversal is an even integer.

Examples

			43 is a term because 43 is prime and 34 is an even number.
		

Crossrefs

Intersection of A000040 and A273892.
Equals disjoint union of A045708, A045710, A045712 and A045714.
Primes whose reversal is a multiple of k: this sequence (k=2), {3} (k=3), A045711 (k=5), A087762 (k=7), {11} (k=11), A087764 (k=13), A087765 (k=17), A087766 (k=19), A087767 (k=23).

Programs

  • Mathematica
    imax=142; a={}; For[i=1, i<=imax, i++, If[EvenQ[FromDigits[Reverse[IntegerDigits[Prime[i]]]]], AppendTo[a,Prime[i]]]]; a (* Stefano Spezia, Jul 20 2022 *)
    Select[Prime[Range[200]],EvenQ[IntegerDigits[#][[1]]]&] (* Harvey P. Dale, May 18 2025 *)
  • PARI
    isok(k) = isprime(k) && !(fromdigits(Vecrev(digits(k))) % 2); \\ Michel Marcus, Jul 20 2022
    
  • Python
    from sympy import isprime
    def ok(n): return str(n)[0] in "2468" and isprime(n)
    print([k for k in range(822) if ok(k)]) # Michael S. Branicky, Jul 25 2022
    
  • Python
    from sympy import isprime
    from itertools import chain, count, islice, product
    def agen(): yield from chain((2,), (t for t in (b+i for d in count(1) for b in range(2*10**d, 10*10**d, 2*10**d) for i in range(1, 10**d, 2)) if isprime(t)))
    print(list(islice(agen(), 62))) # Michael S. Branicky, Jul 25 2022

A065687 Number of primes <= prime(n) which begin with an 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Examples

			83 = A000040(23) is the first prime beginning with an 8, so a(23) = 1 and a(i) = 0 for i < 23. a(664579) = 71038 (A000040(664579) = 9999991 is the largest prime < 10,000,000).
		

Crossrefs

Programs

  • Mathematica
    Accumulate[If[First[IntegerDigits[#]] == 8, 1, 0]&/@Prime[Range[100]]] (* Vincenzo Librandi, Nov 28 2016 *)
  • PARI
    lista(n) = { my(a=[p\10^logint(p,10)==8 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009

A290407 Primes obtained from other primes by prefixing an 8.

Original entry on oeis.org

83, 811, 823, 829, 853, 859, 883, 8101, 8167, 8179, 8191, 8233, 8263, 8269, 8293, 8311, 8317, 8353, 8389, 8419, 8431, 8443, 8461, 8467, 8521, 8563, 8599, 8641, 8647, 8677, 8719, 8761, 8821, 8839, 8863, 8887, 8929, 8941, 8971, 81013, 81019, 81031, 81049, 81097
Offset: 1

Views

Author

K. D. Bajpai, Jul 30 2017

Keywords

Comments

Except a(1), all the terms in this sequence are congruent to 1 mod 3.

Examples

			823 is in the sequence because it is a prime obtained by prefixing an 8 to the prime 23.
8317 is in the sequence because it is a prime obtained by prefixing an 8 to the prime 317.
		

Crossrefs

Subsequence of A045714.

Programs

  • Magma
    [k : p in PrimesUpTo (5000) | IsPrime (k) where k is Seqint (Intseq (p) cat Intseq (8))];
  • Maple
    A290407:= n-> (parse(cat(8, ithprime(n)))): select(isprime, [seq((A290407 (n), n=1..1000))]);
  • Mathematica
    Select[k = 8; Table[FromDigits[Join[IntegerDigits[k], IntegerDigits[Prime[n]]]], {n, 500}], PrimeQ]
  • PARI
    forprime(p = 2,5000, k=eval(concat(8,Str(p))); if(isprime(k), print1(k,", ")));
    
Previous Showing 21-23 of 23 results.