A035265
One half of deca-factorial numbers.
Original entry on oeis.org
1, 12, 264, 8448, 354816, 18450432, 1143926784, 82362728448, 6753743732736, 621344423411712, 63377131187994624, 7098238693055397888, 865985120552758542336, 114310035912964127588352, 16232025099640906117545984, 2467267815145417729866989568, 399697386053557672238452310016
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 10*j-8)/2 ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j-8: j in [1..n]])/2: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(10*j-8, j=1..n)/2, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[10^n*Pochhammer[2/10, n]/2, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 10*j-8)/2 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j-8) for j in (1..n))/2 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A144773
10-fold factorials: Product_{k=0..n-1} (10*k+1).
Original entry on oeis.org
1, 1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, 5252921480961, 478015854767451, 48279601331512551, 5359035747797893161, 648443325483545072481, 84946075638344404495011, 11977396665006561033796551, 1808586896415990716103279201, 291182490322974505292627951361
Offset: 0
Essentially a duplicate of
A045757.
-
R:=PowerSeriesRing(Rationals(), 15); Coefficients(R!(Laplace( (1-10*x)^(-1/10) ))); // G. C. Greubel, Mar 03 2020
-
G(x):=(1-10*x)^(-1/10): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
-
b = 10; Table[FullSimplify[b^n*Gamma[n + 1/b]/Gamma[1/b]], {n, 0, 14}] (* Michael De Vlieger, Sep 14 2016 *)
Join[{1},FoldList[Times,10 Range[0,15]+1]] (* Harvey P. Dale, Oct 24 2022 *)
-
Vec(serlaplace( (1-10*x)^(-1/10) +O('x^15) )) \\ G. C. Greubel, Mar 03 2020
-
[10^n*rising_factorial(1/10,n) for n in (0..15)] # G. C. Greubel, Mar 03 2020
A048176
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -10, 1, 200, -30, 1, -6000, 1100, -60, 1, 240000, -50000, 3500, -100, 1, -12000000, 2740000, -225000, 8500, -150, 1, 720000000, -176400000, 16240000, -735000, 17500, -210, 1, -50400000000, 13068000000, -1313200000, 67690000, -1960000, 32200, -280, 1, 4032000000000, -1095840000000
Offset: 1
{1}; {-10,1}; {200,-30,1}; {-6000,1100,-60,1}; ... E(3,x) = 200*x-30*x^2+x^3.
- Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
First (m=1) (unsigned) column sequence is:
A051262(n-1). Row sums (signed triangle):
A049212(n-1)*(-1)^(n-1). Row sums (unsigned triangle):
A045757(n). b=8:
A051187, b=9:
A051231.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (-1)^n*n!*10^n, 9); # Peter Luschny, Jan 28 2016
-
rows = 9;
t = Table[(-1)^n*n!*10^n, {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A020018
Nearest integer to Gamma(n + 1/10)/Gamma(1/10).
Original entry on oeis.org
1, 0, 0, 0, 1, 3, 15, 91, 649, 5253, 47802, 482796, 5359036, 64844333, 849460756, 11977396665, 180858689642, 2911824903230, 49792205845229, 901238925798638, 17213663482753993, 345994636003355265, 7300486819670796088
Offset: 0
Gamma(1/10)/Gamma(1/10) = 1, so a(0) = 1.
Gamma(1 + 1/10)/Gamma(1/10) = 1/10 < 1/2, so a(1) = 0.
Gamma(2 + 1/10)/Gamma(1/10) = 11/100 < 1/2, so a(2) = 0.
Gamma(3 + 1/10)/Gamma(1/10) = 231/1000 < 1/2, so a(3) = 0.
Gamma(4 + 1/10)/Gamma(1/10) = 7161/10000 = 0.7161, so a(4) = 1.
Gamma(5 + 1/10)/Gamma(1/10) = 293601/100000 = 2.93601, so a(5) = 3.
Gamma(6 + 1/10)/Gamma(1/10) = 14973651/1000000 = 14.973651, so a(6) = 15.
-
[Round(Gamma(n +1/10)/Gamma(1/10)): n in [0..30]]; // G. C. Greubel, Jan 20 2018
-
Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
-
Table[Round[Gamma[n + 1/10]/Gamma[1/10]], {n, 0, 50}] (* G. C. Greubel, Jan 20 2018 *)
-
for(n=0,30, print1(round(gamma(n+1/10)/gamma(1/10)), ", ")) \\ G. C. Greubel, Jan 20 2018
Previous
Showing 11-14 of 14 results.
Comments